add lora convert feature

This commit is contained in:
BuildTools 2024-08-04 14:13:20 -07:00
parent f12bd1efec
commit 5843b51c0c
16 changed files with 9186 additions and 2 deletions

View File

@ -326,6 +326,95 @@ def __init__(self):
main_widget.setLayout(main_layout) main_widget.setLayout(main_layout)
self.setCentralWidget(main_widget) self.setCentralWidget(main_widget)
# LoRA Conversion Section
lora_group = QGroupBox(LORA_CONVERSION)
lora_layout = QFormLayout()
self.lora_input = QLineEdit()
lora_input_button = QPushButton(BROWSE)
lora_input_button.clicked.connect(self.browse_lora_input)
lora_input_layout = QHBoxLayout()
lora_input_layout.addWidget(self.lora_input)
lora_input_layout.addWidget(lora_input_button)
lora_layout.addRow(self.create_label(LORA_INPUT_PATH, SELECT_LORA_INPUT_DIRECTORY), lora_input_layout)
self.lora_output = QLineEdit()
lora_output_button = QPushButton(BROWSE)
lora_output_button.clicked.connect(self.browse_lora_output)
lora_output_layout = QHBoxLayout()
lora_output_layout.addWidget(self.lora_output)
lora_output_layout.addWidget(lora_output_button)
lora_layout.addRow(self.create_label(LORA_OUTPUT_PATH, SELECT_LORA_OUTPUT_FILE), lora_output_layout)
# Output Type Dropdown
self.lora_output_type_combo = QComboBox()
self.lora_output_type_combo.addItems(["GGML", "GGUF"])
self.lora_output_type_combo.currentIndexChanged.connect(self.update_base_model_visibility) # Connect to update visibility
lora_layout.addRow(self.create_label(OUTPUT_TYPE, SELECT_OUTPUT_TYPE), self.lora_output_type_combo)
# Base Model Path (initially hidden)
self.base_model_path = QLineEdit()
base_model_button = QPushButton(BROWSE)
base_model_button.clicked.connect(self.browse_base_model)
base_model_layout = QHBoxLayout()
base_model_layout.addWidget(self.base_model_path)
base_model_layout.addWidget(base_model_button)
self.base_model_widget = QWidget()
self.base_model_widget.setLayout(base_model_layout)
self.base_model_widget.setVisible(False) # Initially hidden
lora_layout.addRow(self.create_label(BASE_MODEL, SELECT_BASE_MODEL_FILE), self.base_model_widget)
lora_convert_button = QPushButton(CONVERT_LORA)
lora_convert_button.clicked.connect(self.convert_lora)
lora_layout.addRow(lora_convert_button)
lora_group.setLayout(lora_layout)
right_layout.addWidget(lora_group)
# Export LoRA
export_lora_group = QGroupBox(EXPORT_LORA)
export_lora_layout = QFormLayout()
self.export_lora_model = QLineEdit()
export_lora_model_button = QPushButton(BROWSE)
export_lora_model_button.clicked.connect(self.browse_export_lora_model)
export_lora_model_layout = QHBoxLayout()
export_lora_model_layout.addWidget(self.export_lora_model)
export_lora_model_layout.addWidget(export_lora_model_button)
export_lora_layout.addRow(self.create_label(MODEL, SELECT_MODEL_FILE), export_lora_model_layout)
self.export_lora_output = QLineEdit()
export_lora_output_button = QPushButton(BROWSE)
export_lora_output_button.clicked.connect(self.browse_export_lora_output)
export_lora_output_layout = QHBoxLayout()
export_lora_output_layout.addWidget(self.export_lora_output)
export_lora_output_layout.addWidget(export_lora_output_button)
export_lora_layout.addRow(self.create_label(OUTPUT, SELECT_OUTPUT_FILE), export_lora_output_layout)
# GGML LoRA Adapters
self.export_lora_adapters = QListWidget()
add_adapter_button = QPushButton(ADD_ADAPTER)
add_adapter_button.clicked.connect(self.add_lora_adapter)
adapters_layout = QVBoxLayout()
adapters_layout.addWidget(self.export_lora_adapters)
buttons_layout = QHBoxLayout()
buttons_layout.addWidget(add_adapter_button)
adapters_layout.addLayout(buttons_layout)
export_lora_layout.addRow(self.create_label(GGML_LORA_ADAPTERS, SELECT_LORA_ADAPTER_FILES), adapters_layout)
# Threads
self.export_lora_threads = QSpinBox()
self.export_lora_threads.setRange(1, 64)
self.export_lora_threads.setValue(8) # Default value
export_lora_layout.addRow(self.create_label(THREADS, NUMBER_OF_THREADS_FOR_LORA_EXPORT), self.export_lora_threads)
export_lora_button = QPushButton(EXPORT_LORA)
export_lora_button.clicked.connect(self.export_lora)
export_lora_layout.addRow(export_lora_button)
export_lora_group.setLayout(export_lora_layout)
right_layout.addWidget(export_lora_group) # Add the Export LoRA group to the right layout
# Modify the task list to support right-click menu # Modify the task list to support right-click menu
self.task_list.setContextMenuPolicy(Qt.ContextMenuPolicy.CustomContextMenu) self.task_list.setContextMenuPolicy(Qt.ContextMenuPolicy.CustomContextMenu)
self.task_list.customContextMenuRequested.connect(self.show_task_context_menu) self.task_list.customContextMenuRequested.connect(self.show_task_context_menu)
@ -361,6 +450,9 @@ def refresh_backends(self):
self.backend_combo.addItem(NO_BACKENDS_AVAILABLE) self.backend_combo.addItem(NO_BACKENDS_AVAILABLE)
self.backend_combo.setEnabled(False) self.backend_combo.setEnabled(False)
self.logger.info(FOUND_VALID_BACKENDS.format(self.backend_combo.count())) self.logger.info(FOUND_VALID_BACKENDS.format(self.backend_combo.count()))
def update_base_model_visibility(self, index):
self.base_model_widget.setVisible(self.lora_output_type_combo.itemText(index) == "GGUF")
def save_preset(self): def save_preset(self):
self.logger.info(SAVING_PRESET) self.logger.info(SAVING_PRESET)
@ -437,6 +529,128 @@ def save_task_preset(self, task_item):
QMessageBox.information(self, TASK_PRESET_SAVED, TASK_PRESET_SAVED_TO.format(file_name)) QMessageBox.information(self, TASK_PRESET_SAVED, TASK_PRESET_SAVED_TO.format(file_name))
break break
def browse_export_lora_model(self):
self.logger.info(BROWSING_FOR_EXPORT_LORA_MODEL_FILE)
model_file, _ = QFileDialog.getOpenFileName(self, SELECT_MODEL_FILE, "", GGUF_FILES)
if model_file:
self.export_lora_model.setText(os.path.abspath(model_file))
def browse_export_lora_output(self):
self.logger.info(BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE)
output_file, _ = QFileDialog.getSaveFileName(self, SELECT_OUTPUT_FILE, "", GGUF_FILES)
if output_file:
self.export_lora_output.setText(os.path.abspath(output_file))
def add_lora_adapter(self):
self.logger.info(ADDING_LORA_ADAPTER)
adapter_path, _ = QFileDialog.getOpenFileName(self, SELECT_LORA_ADAPTER_FILE, "", LORA_FILES)
if adapter_path:
# Create a widget to hold the path and scale input
adapter_widget = QWidget()
adapter_layout = QHBoxLayout(adapter_widget)
path_input = QLineEdit(adapter_path)
path_input.setReadOnly(True)
adapter_layout.addWidget(path_input)
scale_input = QLineEdit("1.0") # Default scale value
adapter_layout.addWidget(scale_input)
delete_button = QPushButton(DELETE_ADAPTER)
delete_button.clicked.connect(lambda: self.delete_lora_adapter_item(adapter_widget))
adapter_layout.addWidget(delete_button)
# Add the widget to the list
list_item = QListWidgetItem(self.export_lora_adapters)
list_item.setSizeHint(adapter_widget.sizeHint())
self.export_lora_adapters.addItem(list_item)
self.export_lora_adapters.setItemWidget(list_item, adapter_widget)
def browse_base_model(self):
self.logger.info(BROWSING_FOR_BASE_MODEL_FOLDER) # Updated log message
base_model_folder = QFileDialog.getExistingDirectory(self, SELECT_BASE_MODEL_FOLDER)
if base_model_folder:
self.base_model_path.setText(os.path.abspath(base_model_folder))
def delete_lora_adapter_item(self, adapter_widget):
self.logger.info(DELETING_LORA_ADAPTER)
# Find the QListWidgetItem containing the adapter_widget
for i in range(self.export_lora_adapters.count()):
item = self.export_lora_adapters.item(i)
if self.export_lora_adapters.itemWidget(item) == adapter_widget:
self.export_lora_adapters.takeItem(i) # Remove the item
break
def export_lora(self):
self.logger.info(STARTING_LORA_EXPORT)
try:
model_path = self.export_lora_model.text()
output_path = self.export_lora_output.text()
lora_adapters = []
for i in range(self.export_lora_adapters.count()):
item = self.export_lora_adapters.item(i)
adapter_widget = self.export_lora_adapters.itemWidget(item)
path_input = adapter_widget.layout().itemAt(0).widget()
scale_input = adapter_widget.layout().itemAt(1).widget()
adapter_path = path_input.text()
adapter_scale = scale_input.text()
lora_adapters.append((adapter_path, adapter_scale))
if not model_path:
raise ValueError(MODEL_PATH_REQUIRED)
if not output_path:
raise ValueError(OUTPUT_PATH_REQUIRED)
if not lora_adapters:
raise ValueError(AT_LEAST_ONE_LORA_ADAPTER_REQUIRED)
backend_path = self.backend_combo.currentData()
if not backend_path:
raise ValueError(NO_BACKEND_SELECTED)
command = [os.path.join(backend_path, "llama-export-lora"),
"--model", model_path,
"--output", output_path]
for adapter_path, adapter_scale in lora_adapters:
if adapter_path:
if adapter_scale:
try:
scale_value = float(adapter_scale)
command.extend(["--lora-scaled", adapter_path, str(scale_value)])
except ValueError:
raise ValueError(INVALID_LORA_SCALE_VALUE)
else:
command.extend(["--lora", adapter_path])
threads = self.export_lora_threads.value()
command.extend(["--threads", str(threads)])
logs_path = self.logs_input.text()
ensure_directory(logs_path)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = os.path.join(logs_path, f"lora_export_{timestamp}.log")
thread = QuantizationThread(command, backend_path, log_file)
self.quant_threads.append(thread)
task_item = TaskListItem(EXPORTING_LORA, log_file)
list_item = QListWidgetItem(self.task_list)
list_item.setSizeHint(task_item.sizeHint())
self.task_list.addItem(list_item)
self.task_list.setItemWidget(list_item, task_item)
thread.status_signal.connect(task_item.update_status)
thread.finished_signal.connect(lambda: self.task_finished(thread))
thread.error_signal.connect(lambda err: self.handle_error(err, task_item))
thread.start()
self.logger.info(LORA_EXPORT_TASK_STARTED)
except ValueError as e:
self.show_error(str(e))
except Exception as e:
self.show_error(ERROR_STARTING_LORA_EXPORT.format(str(e)))
def restart_task(self, task_item): def restart_task(self, task_item):
self.logger.info(RESTARTING_TASK.format(task_item.task_name)) self.logger.info(RESTARTING_TASK.format(task_item.task_name))
for thread in self.quant_threads: for thread in self.quant_threads:
@ -451,6 +665,82 @@ def restart_task(self, task_item):
task_item.update_status(IN_PROGRESS) task_item.update_status(IN_PROGRESS)
break break
def browse_lora_input(self):
self.logger.info(BROWSING_FOR_LORA_INPUT_DIRECTORY)
lora_input_path = QFileDialog.getExistingDirectory(self, SELECT_LORA_INPUT_DIRECTORY)
if lora_input_path:
self.lora_input.setText(os.path.abspath(lora_input_path))
ensure_directory(lora_input_path)
def browse_lora_output(self):
self.logger.info(BROWSING_FOR_LORA_OUTPUT_FILE)
lora_output_file, _ = QFileDialog.getSaveFileName(self, SELECT_LORA_OUTPUT_FILE, "", GGUF_AND_BIN_FILES)
if lora_output_file:
self.lora_output.setText(os.path.abspath(lora_output_file))
def convert_lora(self):
self.logger.info(STARTING_LORA_CONVERSION)
try:
lora_input_path = self.lora_input.text()
lora_output_path = self.lora_output.text()
lora_output_type = self.lora_output_type_combo.currentText()
if not lora_input_path:
raise ValueError(LORA_INPUT_PATH_REQUIRED)
if not lora_output_path:
raise ValueError(LORA_OUTPUT_PATH_REQUIRED)
if lora_output_type == "GGUF": # Use new file and parameters for GGUF
command = ["python", "src/convert_lora_to_gguf.py", "--outfile", lora_output_path, lora_input_path]
base_model_path = self.base_model_path.text()
if not base_model_path:
raise ValueError(BASE_MODEL_PATH_REQUIRED)
command.extend(["--base", base_model_path])
else: # Use old GGML parameters for GGML
command = ["python", "src/convert_lora_to_ggml.py", lora_input_path]
logs_path = self.logs_input.text()
ensure_directory(logs_path)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = os.path.join(logs_path, f"lora_conversion_{timestamp}.log")
thread = QuantizationThread(command, os.getcwd(), log_file)
self.quant_threads.append(thread)
task_name = LORA_CONVERSION_FROM_TO.format(os.path.basename(lora_input_path), os.path.basename(lora_output_path))
task_item = TaskListItem(task_name, log_file)
list_item = QListWidgetItem(self.task_list)
list_item.setSizeHint(task_item.sizeHint())
self.task_list.addItem(list_item)
self.task_list.setItemWidget(list_item, task_item)
thread.status_signal.connect(task_item.update_status)
thread.finished_signal.connect(lambda: self.lora_conversion_finished(thread, lora_input_path, lora_output_path))
thread.error_signal.connect(lambda err: self.handle_error(err, task_item))
thread.start()
self.logger.info(LORA_CONVERSION_TASK_STARTED)
except ValueError as e:
self.show_error(str(e))
except Exception as e:
self.show_error(ERROR_STARTING_LORA_CONVERSION.format(str(e)))
def lora_conversion_finished(self, thread, input_path, output_path):
self.logger.info(LORA_CONVERSION_FINISHED)
if thread in self.quant_threads:
self.quant_threads.remove(thread)
try:
# Only move the file if the output type is GGML
if self.lora_output_type_combo.currentText() == "GGML":
source_file = os.path.join(input_path, "ggml-adapter-model.bin")
if os.path.exists(source_file):
shutil.move(source_file, output_path)
self.logger.info(LORA_FILE_MOVED.format(source_file, output_path))
else:
self.logger.warning(LORA_FILE_NOT_FOUND.format(source_file))
except Exception as e:
self.logger.error(ERROR_MOVING_LORA_FILE.format(str(e)))
def download_finished(self, extract_dir): def download_finished(self, extract_dir):
self.logger.info(DOWNLOAD_FINISHED_EXTRACTED_TO.format(extract_dir)) self.logger.info(DOWNLOAD_FINISHED_EXTRACTED_TO.format(extract_dir))
self.download_button.setEnabled(True) self.download_button.setEnabled(True)
@ -945,6 +1235,10 @@ def generate_imatrix(self):
if not os.path.exists(backend_path): if not os.path.exists(backend_path):
raise FileNotFoundError(BACKEND_PATH_NOT_EXIST.format(backend_path)) raise FileNotFoundError(BACKEND_PATH_NOT_EXIST.format(backend_path))
# Check if the Model area is empty
if not self.imatrix_model.text():
raise ValueError(MODEL_PATH_REQUIRED_FOR_IMATRIX)
command = [ command = [
os.path.join(backend_path, "llama-imatrix"), os.path.join(backend_path, "llama-imatrix"),
"-f", self.imatrix_datafile.text(), "-f", self.imatrix_datafile.text(),
@ -966,7 +1260,8 @@ def generate_imatrix(self):
thread = QuantizationThread(command, backend_path, log_file) thread = QuantizationThread(command, backend_path, log_file)
self.quant_threads.append(thread) self.quant_threads.append(thread)
task_item = TaskListItem(GENERATING_IMATRIX, log_file) task_name = GENERATING_IMATRIX_FOR.format(os.path.basename(self.imatrix_model.text()))
task_item = TaskListItem(task_name, log_file)
list_item = QListWidgetItem(self.task_list) list_item = QListWidgetItem(self.task_list)
list_item.setSizeHint(task_item.sizeHint()) list_item.setSizeHint(task_item.sizeHint())
self.task_list.addItem(list_item) self.task_list.addItem(list_item)

3717
src/convert_hf_to_gguf.py Normal file

File diff suppressed because it is too large Load Diff

153
src/convert_lora_to_ggml.py Normal file
View File

@ -0,0 +1,153 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("lora-to-gguf")
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", params["r"]))
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
# but some models ship a float value instead
# let's convert to int, but fail if lossless conversion is not possible
assert (
int(params["lora_alpha"]) == params["lora_alpha"]
), "cannot convert float to int losslessly"
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
sname = name.encode("utf-8")
fout.write(
struct.pack(
"iii",
len(shape),
len(sname),
NUMPY_TYPE_TO_FTYPE[data_type.name],
)
)
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
fout.seek((fout.tell() + 31) & -32)
def pyinstaller_include():
# PyInstaller import
pass
if __name__ == '__main__':
if len(sys.argv) < 2:
logger.info(f"Usage: python {sys.argv[0]} <path> [arch]")
logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'")
logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
if os.path.exists(input_model):
model = torch.load(input_model, map_location="cpu")
else:
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
model = load_file(input_model, device="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
logger.error(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
with open(input_json, "r") as f:
params = json.load(f)
if params["peft_type"] != "LORA":
logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
if params["fan_in_fan_out"] is True:
logger.error("Error: param fan_in_fan_out is not supported")
sys.exit(1)
if params["bias"] is not None and params["bias"] != "none":
logger.error("Error: param bias is not supported")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
logger.error("Error: param modules_to_save is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy()
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
logger.error(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
logger.error(f"Error: could not map tensor name {orig_k}")
logger.error(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
logger.info(f"Converted {input_json} and {input_model} to {output_path}")

395
src/convert_lora_to_gguf.py Normal file
View File

@ -0,0 +1,395 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from dataclasses import dataclass
import logging
import argparse
import os
import sys
import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
import torch
if TYPE_CHECKING:
from torch import Tensor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, Model
logger = logging.getLogger("lora-to-gguf")
@dataclass
class PartialLoraTensor:
A: Tensor | None = None
B: Tensor | None = None
# magic to support tensor shape modifications and splitting
class LoraTorchTensor:
_lora_A: Tensor # (n_rank, row_size)
_lora_B: Tensor # (col_size, n_rank)
_rank: int
def __init__(self, A: Tensor, B: Tensor):
assert len(A.shape) == len(B.shape)
assert A.shape[-2] == B.shape[-1]
if A.dtype != B.dtype:
A = A.to(torch.float32)
B = B.to(torch.float32)
self._lora_A = A
self._lora_B = B
self._rank = B.shape[-1]
def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
return (self._lora_A, self._lora_B)
def __getitem__(
self,
indices: (
SupportsIndex
| slice
| tuple[SupportsIndex | slice | Tensor, ...] # TODO: add ellipsis in the type signature
),
) -> LoraTorchTensor:
shape = self.shape
if isinstance(indices, SupportsIndex):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
raise NotImplementedError # can't return a vector
elif isinstance(indices, slice):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
return LoraTorchTensor(self._lora_A, self._lora_B[indices])
elif isinstance(indices, tuple):
assert len(indices) > 0
if indices[-1] is Ellipsis:
return self[indices[:-1]]
# expand ellipsis
indices = tuple(
u
for v in (
(
(slice(None, None) for _ in range(len(indices) - 1))
if i is Ellipsis
else (i,)
)
for i in indices
)
for u in v
)
if len(indices) < len(shape):
indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))
# TODO: make sure this is correct
indices_A = (
*(
(
j.__index__() % self._lora_A.shape[i]
if isinstance(j, SupportsIndex)
else slice(None, None)
)
for i, j in enumerate(indices[:-2])
),
slice(None, None),
indices[-1],
)
indices_B = indices[:-1]
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
else:
raise NotImplementedError # unknown indice type
@property
def dtype(self) -> torch.dtype:
assert self._lora_A.dtype == self._lora_B.dtype
return self._lora_A.dtype
@property
def shape(self) -> tuple[int, ...]:
assert len(self._lora_A.shape) == len(self._lora_B.shape)
return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])
def size(self, dim=None):
assert dim is None
return self.shape
def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
if isinstance(shape[0], tuple):
new_shape: tuple[int, ...] = shape[0]
else:
new_shape = cast(tuple[int, ...], shape)
orig_shape = self.shape
if len(new_shape) < 2:
raise NotImplementedError # can't become a vector
# expand -1 in the shape
if any(dim == -1 for dim in new_shape):
n_elems = prod(orig_shape)
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
assert n_elems % n_new_elems == 0
new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)
if new_shape[-1] != orig_shape[-1]:
raise NotImplementedError # can't reshape the row size trivially
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
shape_B = (*new_shape[:-1], self._rank)
return LoraTorchTensor(
self._lora_A.reshape(shape_A),
self._lora_B.reshape(shape_B),
)
def reshape_as(self, other: Tensor) -> LoraTorchTensor:
return self.reshape(*other.shape)
def view(self, *size: int) -> LoraTorchTensor:
return self.reshape(*size)
def permute(self, *dims: int) -> LoraTorchTensor:
shape = self.shape
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
if dims[-1] == -1:
# TODO: support higher dimensional A shapes bigger than 1
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
else:
# TODO: compose the above two
raise NotImplementedError
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
shape = self.shape
dims = [i for i in range(len(shape))]
dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
return self.permute(*dims)
def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
return self.transpose(axis0, axis1)
def to(self, *args, **kwargs):
return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))
@classmethod
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.permute:
return type(args[0]).permute(*args, **kwargs)
elif func is torch.reshape:
return type(args[0]).reshape(*args, **kwargs)
elif func is torch.stack:
assert isinstance(args[0], Sequence)
dim = kwargs.get("dim", 0)
assert dim == 0
return LoraTorchTensor(
torch.stack([a._lora_A for a in args[0]], dim),
torch.stack([b._lora_B for b in args[0]], dim),
)
elif func is torch.cat:
assert isinstance(args[0], Sequence)
dim = kwargs.get("dim", 0)
assert dim == 0
if len(args[0][0].shape) > 2:
return LoraTorchTensor(
torch.cat([a._lora_A for a in args[0]], dim),
torch.cat([b._lora_B for b in args[0]], dim),
)
elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
return LoraTorchTensor(
args[0][0]._lora_A,
torch.cat([b._lora_B for b in args[0]], dim),
)
else:
raise NotImplementedError
else:
raise NotImplementedError
def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
return base_name
def pyinstaller_include():
# PyInstaller import
pass
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"--no-lazy", action="store_true",
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--dry-run", action="store_true",
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing base model file",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing LoRA adapter file",
)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
"auto": gguf.LlamaFileType.GUESSED,
}
ftype = ftype_map[args.outtype]
dir_base_model: Path = args.base
dir_lora: Path = args.lora_path
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_lora
if os.path.exists(input_model):
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
lora_model = load_file(input_model, device="cpu")
else:
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
except NotImplementedError:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)
class LoraModel(model_class):
model_arch = model_class.model_arch
lora_alpha: float
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
super().__init__(*args, **kwargs)
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_map: dict[str, PartialLoraTensor] = {}
for name, tensor in lora_model.items():
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
sys.exit(1)
if base_name in tensor_map:
if is_lora_a:
tensor_map[base_name].A = tensor
else:
tensor_map[base_name].B = tensor
else:
if is_lora_a:
tensor_map[base_name] = PartialLoraTensor(A=tensor)
else:
tensor_map[base_name] = PartialLoraTensor(B=tensor)
for name, tensor in tensor_map.items():
assert tensor.A is not None
assert tensor.B is not None
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
dest = super().modify_tensors(data_torch, name, bid)
for dest_name, dest_data in dest:
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
alpha: float = lparams["lora_alpha"]
model_instance = LoraModel(
dir_base_model,
ftype,
fname_out,
is_big_endian=args.bigendian,
use_temp_file=False,
eager=args.no_lazy,
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
)
logger.info("Exporting model...")
model_instance.write()
logger.info(f"Model successfully exported to {model_instance.fname_out}")

View File

@ -0,0 +1,9 @@
from .constants import *
from .lazy import *
from .gguf_reader import *
from .gguf_writer import *
from .quants import *
from .tensor_mapping import *
from .vocab import *
from .utility import *
from .metadata import *

File diff suppressed because it is too large Load Diff

15
src/gguf-py/gguf/gguf.py Normal file
View File

@ -0,0 +1,15 @@
# This file left for compatibility. If you want to use the GGUF API from Python
# then don't import gguf/gguf.py directly. If you're looking for examples, see the
# examples/ directory for gguf-py
import importlib
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent.parent))
# Compatibility for people trying to import gguf/gguf.py directly instead of as a package.
importlib.invalidate_caches()
import gguf # noqa: E402
importlib.reload(gguf)

View File

@ -0,0 +1,317 @@
#
# GGUF file reading/modification support. For API usage information,
# please see the files scripts/ for some fairly simple examples.
#
from __future__ import annotations
import logging
import os
from collections import OrderedDict
from typing import Any, Literal, NamedTuple, TypeVar, Union
import numpy as np
import numpy.typing as npt
from .quants import quant_shape_to_byte_shape
if __name__ == "__main__":
import sys
from pathlib import Path
# Allow running file in package as a script.
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf.constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
GGMLQuantizationType,
GGUFValueType,
)
logger = logging.getLogger(__name__)
READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION]
class ReaderField(NamedTuple):
# Offset to start of this field.
offset: int
# Name of the field (not necessarily from file data).
name: str
# Data parts. Some types have multiple components, such as strings
# that consist of a length followed by the string data.
parts: list[npt.NDArray[Any]] = []
# Indexes into parts that we can call the actual data. For example
# an array of strings will be populated with indexes to the actual
# string data.
data: list[int] = [-1]
types: list[GGUFValueType] = []
class ReaderTensor(NamedTuple):
name: str
tensor_type: GGMLQuantizationType
shape: npt.NDArray[np.uint32]
n_elements: int
n_bytes: int
data_offset: int
data: npt.NDArray[Any]
field: ReaderField
class GGUFReader:
# I - same as host, S - swapped
byte_order: Literal['I', 'S'] = 'I'
alignment: int = GGUF_DEFAULT_ALIGNMENT
data_offset: int
# Note: Internal helper, API may change.
gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = {
GGUFValueType.UINT8: np.uint8,
GGUFValueType.INT8: np.int8,
GGUFValueType.UINT16: np.uint16,
GGUFValueType.INT16: np.int16,
GGUFValueType.UINT32: np.uint32,
GGUFValueType.INT32: np.int32,
GGUFValueType.FLOAT32: np.float32,
GGUFValueType.UINT64: np.uint64,
GGUFValueType.INT64: np.int64,
GGUFValueType.FLOAT64: np.float64,
GGUFValueType.BOOL: np.bool_,
}
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'):
self.data = np.memmap(path, mode = mode)
offs = 0
# Check for GGUF magic
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
raise ValueError('GGUF magic invalid')
offs += 4
# Check GGUF version
temp_version = self._get(offs, np.uint32)
if temp_version[0] & 65535 == 0:
# If we get 0 here that means it's (probably) a GGUF file created for
# the opposite byte order of the machine this script is running on.
self.byte_order = 'S'
temp_version = temp_version.newbyteorder(self.byte_order)
version = temp_version[0]
if version not in READER_SUPPORTED_VERSIONS:
raise ValueError(f'Sorry, file appears to be version {version} which we cannot handle')
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
self.tensors: list[ReaderTensor] = []
offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32]))
# Check tensor count and kv count
temp_counts = self._get(offs, np.uint64, 2)
offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64]))
offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64]))
tensor_count, kv_count = temp_counts
offs = self._build_fields(offs, kv_count)
# Build Tensor Info Fields
offs, tensors_fields = self._build_tensor_info(offs, tensor_count)
new_align = self.fields.get('general.alignment')
if new_align is not None:
if new_align.types != [GGUFValueType.UINT32]:
raise ValueError('Bad type for general.alignment field')
self.alignment = new_align.parts[-1][0]
padding = offs % self.alignment
if padding != 0:
offs += self.alignment - padding
self.data_offset = offs
self._build_tensors(offs, tensors_fields)
_DT = TypeVar('_DT', bound = npt.DTypeLike)
# Fetch a key/value metadata field by key.
def get_field(self, key: str) -> Union[ReaderField, None]:
return self.fields.get(key, None)
# Fetch a tensor from the list by index.
def get_tensor(self, idx: int) -> ReaderTensor:
return self.tensors[idx]
def _get(
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None,
) -> npt.NDArray[Any]:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)
end_offs = offset + itemsize * count
return (
self.data[offset:end_offs]
.view(dtype = dtype)[:count]
.newbyteorder(override_order or self.byte_order)
)
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
if field.name in self.fields:
# TODO: add option to generate error on duplicate keys
# raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}')
logger.warning(f'Duplicate key {field.name} at offset {field.offset}')
self.fields[field.name + '_{}'.format(field.offset)] = field
else:
self.fields[field.name] = field
return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts)
def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]:
slen = self._get(offset, np.uint64)
return slen, self._get(offset + 8, np.uint8, slen[0])
def _get_field_parts(
self, orig_offs: int, raw_type: int,
) -> tuple[int, list[npt.NDArray[Any]], list[int], list[GGUFValueType]]:
offs = orig_offs
types: list[GGUFValueType] = []
gtype = GGUFValueType(raw_type)
types.append(gtype)
# Handle strings.
if gtype == GGUFValueType.STRING:
sparts: list[npt.NDArray[Any]] = list(self._get_str(offs))
size = sum(int(part.nbytes) for part in sparts)
return size, sparts, [1], types
# Check if it's a simple scalar type.
nptype = self.gguf_scalar_to_np.get(gtype)
if nptype is not None:
val = self._get(offs, nptype)
return int(val.nbytes), [val], [0], types
# Handle arrays.
if gtype == GGUFValueType.ARRAY:
raw_itype = self._get(offs, np.uint32)
offs += int(raw_itype.nbytes)
alen = self._get(offs, np.uint64)
offs += int(alen.nbytes)
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
data_idxs: list[int] = []
for idx in range(alen[0]):
curr_size, curr_parts, curr_idxs, curr_types = self._get_field_parts(offs, raw_itype[0])
if idx == 0:
types += curr_types
idxs_offs = len(aparts)
aparts += curr_parts
data_idxs += (idx + idxs_offs for idx in curr_idxs)
offs += curr_size
return offs - orig_offs, aparts, data_idxs, types
# We can't deal with this one.
raise ValueError('Unknown/unhandled field type {gtype}')
def _get_tensor_info_field(self, orig_offs: int) -> ReaderField:
offs = orig_offs
# Get Tensor Name
name_len, name_data = self._get_str(offs)
offs += int(name_len.nbytes + name_data.nbytes)
# Get Tensor Dimensions Count
n_dims = self._get(offs, np.uint32)
offs += int(n_dims.nbytes)
# Get Tensor Dimension Array
dims = self._get(offs, np.uint64, n_dims[0])
offs += int(dims.nbytes)
# Get Tensor Encoding Scheme Type
raw_dtype = self._get(offs, np.uint32)
offs += int(raw_dtype.nbytes)
# Get Tensor Offset
offset_tensor = self._get(offs, np.uint64)
offs += int(offset_tensor.nbytes)
return ReaderField(
orig_offs,
str(bytes(name_data), encoding = 'utf-8'),
[name_len, name_data, n_dims, dims, raw_dtype, offset_tensor],
[1, 3, 4, 5],
)
def _build_fields(self, offs: int, count: int) -> int:
for _ in range(count):
orig_offs = offs
kv_klen, kv_kdata = self._get_str(offs)
offs += int(kv_klen.nbytes + kv_kdata.nbytes)
raw_kv_type = self._get(offs, np.uint32)
offs += int(raw_kv_type.nbytes)
parts: list[npt.NDArray[Any]] = [kv_klen, kv_kdata, raw_kv_type]
idxs_offs = len(parts)
field_size, field_parts, field_idxs, field_types = self._get_field_parts(offs, raw_kv_type[0])
parts += field_parts
self._push_field(ReaderField(
orig_offs,
str(bytes(kv_kdata), encoding = 'utf-8'),
parts,
[idx + idxs_offs for idx in field_idxs],
field_types,
), skip_sum = True)
offs += field_size
return offs
def _build_tensor_info(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
tensor_fields = []
for _ in range(count):
field = self._get_tensor_info_field(offs)
offs += sum(int(part.nbytes) for part in field.parts)
tensor_fields.append(field)
return offs, tensor_fields
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
tensors = []
tensor_names = set() # keep track of name to prevent duplicated tensors
for field in fields:
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
# check if there's any tensor having same name already in the list
tensor_name = str(bytes(name_data), encoding = 'utf-8')
if tensor_name in tensor_names:
raise ValueError(f'Found duplicated tensor with name {tensor_name}')
tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims))
np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
item_type: npt.DTypeLike
if ggml_type == GGMLQuantizationType.F16:
item_count = n_elems
item_type = np.float16
elif ggml_type == GGMLQuantizationType.F32:
item_count = n_elems
item_type = np.float32
elif ggml_type == GGMLQuantizationType.F64:
item_count = n_elems
item_type = np.float64
elif ggml_type == GGMLQuantizationType.I8:
item_count = n_elems
item_type = np.int8
elif ggml_type == GGMLQuantizationType.I16:
item_count = n_elems
item_type = np.int16
elif ggml_type == GGMLQuantizationType.I32:
item_count = n_elems
item_type = np.int32
elif ggml_type == GGMLQuantizationType.I64:
item_count = n_elems
item_type = np.int64
else:
item_count = n_bytes
item_type = np.uint8
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor(
name = tensor_name,
tensor_type = ggml_type,
shape = dims,
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field,
))
self.tensors = tensors

View File

@ -0,0 +1,882 @@
from __future__ import annotations
import logging
import os
import shutil
import struct
import tempfile
from dataclasses import dataclass
from enum import Enum, auto
from math import prod
from pathlib import Path
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from string import ascii_letters, digits
import numpy as np
from .constants import (
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
GGMLQuantizationType,
GGUFEndian,
GGUFValueType,
Keys,
RopeScalingType,
PoolingType,
TokenType,
)
from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__)
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
@dataclass
class TensorInfo:
shape: Sequence[int]
dtype: GGMLQuantizationType
nbytes: int
tensor: np.ndarray[Any, Any] | None = None
@dataclass
class GGUFValue:
value: Any
type: GGUFValueType
class WriterState(Enum):
NO_FILE = auto()
EMPTY = auto()
HEADER = auto()
KV_DATA = auto()
TI_DATA = auto()
WEIGHTS = auto()
class GGUFWriter:
fout: list[BufferedWriter] | None
path: Path | None
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
tensors: list[dict[str, TensorInfo]]
kv_data: list[dict[str, GGUFValue]]
state: WriterState
_simple_value_packing = {
GGUFValueType.UINT8: "B",
GGUFValueType.INT8: "b",
GGUFValueType.UINT16: "H",
GGUFValueType.INT16: "h",
GGUFValueType.UINT32: "I",
GGUFValueType.INT32: "i",
GGUFValueType.FLOAT32: "f",
GGUFValueType.UINT64: "Q",
GGUFValueType.INT64: "q",
GGUFValueType.FLOAT64: "d",
GGUFValueType.BOOL: "?",
}
def __init__(
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
):
self.fout = None
self.path = Path(path) if path else None
self.arch = arch
self.endianess = endianess
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.use_temp_file = use_temp_file
self.temp_file = None
self.tensors = [{}]
self.kv_data = [{}]
self.split_max_tensors = split_max_tensors
self.split_max_size = split_max_size
self.dry_run = dry_run
self.small_first_shard = small_first_shard
logger.info("gguf: This GGUF file is for {0} Endian only".format(
"Big" if self.endianess == GGUFEndian.BIG else "Little",
))
self.state = WriterState.NO_FILE
if self.small_first_shard:
self.tensors.append({})
self.add_architecture()
def get_total_parameter_count(self) -> tuple[int, int, int, int]:
total_params = 0
shared_params = 0
expert_params = 0
expert_sum = 0
n_expert_tensors = 0
last_lora_a: tuple[str, TensorInfo] | None = None
for tensors in self.tensors:
for name, info in tensors.items():
shape = info.shape
if name.endswith(".lora_a"):
last_lora_a = (name, info)
continue
elif name.endswith(".lora_b"):
if last_lora_a is None or last_lora_a[0] != name[:-1] + "a":
# Bail when the LoRA pair can't be found trivially
logger.warning("can't measure LoRA size correctly, tensor order is unusual")
return 0, 0, 0, 0
else:
shape = (*shape[:-1], last_lora_a[1].shape[-1])
size = prod(shape)
if "_exps." in name:
expert_params += (size // shape[-3])
expert_sum += shape[-3]
n_expert_tensors += 1
else:
shared_params += size
total_params += size
# Hopefully this should work even for variable-expert-count models
expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0
# Negate the total to signal it's likely not exact
if last_lora_a is not None:
total_params = -total_params
# NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py
return total_params, shared_params, expert_params, expert_count
def format_shard_names(self, path: Path) -> list[Path]:
if len(self.tensors) == 1:
return [path]
return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
def open_output_file(self, path: Path | None = None) -> None:
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
# allow calling this multiple times as long as the path is the same
return
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if path is not None:
self.path = path
if self.path is not None:
filenames = self.print_plan()
self.fout = [open(filename, "wb") for filename in filenames]
self.state = WriterState.EMPTY
def print_plan(self) -> list[Path]:
logger.info("Writing the following files:")
assert self.path is not None
filenames = self.format_shard_names(self.path)
assert len(filenames) == len(self.tensors)
for name, tensors in zip(filenames, self.tensors):
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
if self.dry_run:
logger.info("Dry run, not writing files")
for name in filenames:
print(name) # noqa: NP100
exit()
return filenames
def add_shard_kv_data(self) -> None:
if len(self.tensors) == 1:
return
total_tensors = sum(len(t) for t in self.tensors)
assert self.fout is not None
total_splits = len(self.fout)
self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
for i, kv_data in enumerate(self.kv_data):
kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
def write_header_to_file(self, path: Path | None = None) -> None:
if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
logger.warning("Model fails split requirements, not splitting")
self.open_output_file(path)
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
assert self.fout is not None
assert len(self.fout) == len(self.tensors)
assert len(self.kv_data) == 1
self.add_shard_kv_data()
for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
fout.write(self._pack("I", GGUF_VERSION))
fout.write(self._pack("Q", len(tensors)))
fout.write(self._pack("Q", len(kv_data)))
fout.flush()
self.state = WriterState.HEADER
def write_kv_data_to_file(self) -> None:
if self.state is not WriterState.HEADER:
raise ValueError(f'Expected output file to contain the header, got {self.state}')
assert self.fout is not None
for fout, kv_data in zip(self.fout, self.kv_data):
kv_bytes = bytearray()
for key, val in kv_data.items():
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
fout.write(kv_bytes)
self.flush()
self.state = WriterState.KV_DATA
def write_ti_data_to_file(self) -> None:
if self.state is not WriterState.KV_DATA:
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
assert self.fout is not None
for fout, tensors in zip(self.fout, self.tensors):
ti_data = bytearray()
offset_tensor = 0
for name, ti in tensors.items():
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
n_dims = len(ti.shape)
ti_data += self._pack("I", n_dims)
for j in range(n_dims):
ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
ti_data += self._pack("I", ti.dtype)
ti_data += self._pack("Q", offset_tensor)
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
fout.write(ti_data)
fout.flush()
self.state = WriterState.TI_DATA
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
if any(key in kv_data for kv_data in self.kv_data):
raise ValueError(f'Duplicated key name {key!r}')
self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
def add_uint8(self, key: str, val: int) -> None:
self.add_key_value(key,val, GGUFValueType.UINT8)
def add_int8(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT8)
def add_uint16(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.UINT16)
def add_int16(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT16)
def add_uint32(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.UINT32)
def add_int32(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT32)
def add_float32(self, key: str, val: float) -> None:
self.add_key_value(key, val, GGUFValueType.FLOAT32)
def add_uint64(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.UINT64)
def add_int64(self, key: str, val: int) -> None:
self.add_key_value(key, val, GGUFValueType.INT64)
def add_float64(self, key: str, val: float) -> None:
self.add_key_value(key, val, GGUFValueType.FLOAT64)
def add_bool(self, key: str, val: bool) -> None:
self.add_key_value(key, val, GGUFValueType.BOOL)
def add_string(self, key: str, val: str) -> None:
if not val:
return
self.add_key_value(key, val, GGUFValueType.STRING)
def add_array(self, key: str, val: Sequence[Any]) -> None:
if len(val) == 0:
return
self.add_key_value(key, val, GGUFValueType.ARRAY)
@staticmethod
def ggml_pad(x: int, n: int) -> int:
return ((x + n - 1) // n) * n
def add_tensor_info(
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if any(name in tensors for tensors in self.tensors):
raise ValueError(f'Duplicated tensor name {name!r}')
if raw_dtype is None:
if tensor_dtype == np.float16:
dtype = GGMLQuantizationType.F16
elif tensor_dtype == np.float32:
dtype = GGMLQuantizationType.F32
elif tensor_dtype == np.float64:
dtype = GGMLQuantizationType.F64
elif tensor_dtype == np.int8:
dtype = GGMLQuantizationType.I8
elif tensor_dtype == np.int16:
dtype = GGMLQuantizationType.I16
elif tensor_dtype == np.int32:
dtype = GGMLQuantizationType.I32
elif tensor_dtype == np.int64:
dtype = GGMLQuantizationType.I64
else:
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
else:
dtype = raw_dtype
if tensor_dtype == np.uint8:
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
# make sure there is at least one tensor before splitting
if len(self.tensors[-1]) > 0:
if ( # split when over tensor limit
self.split_max_tensors != 0
and len(self.tensors[-1]) >= self.split_max_tensors
) or ( # split when over size limit
self.split_max_size != 0
and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
):
self.tensors.append({})
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
def add_tensor(
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
if self.use_temp_file and self.temp_file is None:
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
fp.seek(0)
self.temp_file = fp
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
if self.temp_file is None:
self.tensors[-1][name].tensor = tensor
return
tensor.tofile(self.temp_file)
self.write_padding(self.temp_file, tensor.nbytes)
def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
if pad != 0:
fp.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
assert self.fout is not None
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
file_id = -1
for i, tensors in enumerate(self.tensors):
if len(tensors) > 0:
file_id = i
break
fout = self.fout[file_id]
# pop the first tensor info
# TODO: cleaner way to get the first key
first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
ti = self.tensors[file_id].pop(first_tensor_name)
assert ti.nbytes == tensor.nbytes
self.write_padding(fout, fout.tell())
tensor.tofile(fout)
self.write_padding(fout, tensor.nbytes)
self.state = WriterState.WEIGHTS
def write_tensors_to_file(self, *, progress: bool = False) -> None:
self.write_ti_data_to_file()
assert self.fout is not None
for fout in self.fout:
self.write_padding(fout, fout.tell())
if self.temp_file is None:
shard_bar = None
bar = None
if progress:
from tqdm import tqdm
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
if len(self.fout) > 1:
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
if shard_bar is not None:
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
total = sum(ti.nbytes for ti in tensors.values())
shard_bar.reset(total=(total if total > 0 else None))
# relying on the fact that Python dicts preserve insertion order (since 3.7)
for ti in tensors.values():
assert ti.tensor is not None # can only iterate once over the tensors
assert ti.tensor.nbytes == ti.nbytes
ti.tensor.tofile(fout)
if shard_bar is not None:
shard_bar.update(ti.nbytes)
if bar is not None:
bar.update(ti.nbytes)
self.write_padding(fout, ti.nbytes)
ti.tensor = None
else:
self.temp_file.seek(0)
shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
self.flush()
self.temp_file.close()
self.state = WriterState.WEIGHTS
def flush(self) -> None:
assert self.fout is not None
for fout in self.fout:
fout.flush()
def close(self) -> None:
if self.fout is not None:
for fout in self.fout:
fout.close()
self.fout = None
def add_type(self, type_name: str) -> None:
self.add_string(Keys.General.TYPE, type_name)
def add_architecture(self) -> None:
self.add_string(Keys.General.ARCHITECTURE, self.arch)
def add_quantization_version(self, quantization_version: int) -> None:
self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version)
def add_custom_alignment(self, alignment: int) -> None:
self.data_alignment = alignment
self.add_uint32(Keys.General.ALIGNMENT, alignment)
def add_file_type(self, ftype: int) -> None:
self.add_uint32(Keys.General.FILE_TYPE, ftype)
def add_name(self, name: str) -> None:
self.add_string(Keys.General.NAME, name)
def add_author(self, author: str) -> None:
self.add_string(Keys.General.AUTHOR, author)
def add_version(self, version: str) -> None:
self.add_string(Keys.General.VERSION, version)
def add_organization(self, organization: str) -> None:
self.add_string(Keys.General.ORGANIZATION, organization)
def add_finetune(self, finetune: str) -> None:
self.add_string(Keys.General.FINETUNE, finetune)
def add_basename(self, basename: str) -> None:
self.add_string(Keys.General.BASENAME, basename)
def add_description(self, description: str) -> None:
self.add_string(Keys.General.DESCRIPTION, description)
def add_quantized_by(self, quantized: str) -> None:
self.add_string(Keys.General.QUANTIZED_BY, quantized)
def add_size_label(self, size_label: str) -> None:
self.add_string(Keys.General.SIZE_LABEL, size_label)
def add_license(self, license: str) -> None:
self.add_string(Keys.General.LICENSE, license)
def add_license_name(self, license: str) -> None:
self.add_string(Keys.General.LICENSE_NAME, license)
def add_license_link(self, license: str) -> None:
self.add_string(Keys.General.LICENSE_LINK, license)
def add_url(self, url: str) -> None:
self.add_string(Keys.General.URL, url)
def add_doi(self, doi: str) -> None:
self.add_string(Keys.General.DOI, doi)
def add_uuid(self, uuid: str) -> None:
self.add_string(Keys.General.UUID, uuid)
def add_repo_url(self, repo_url: str) -> None:
self.add_string(Keys.General.REPO_URL, repo_url)
def add_source_url(self, url: str) -> None:
self.add_string(Keys.General.SOURCE_URL, url)
def add_source_doi(self, doi: str) -> None:
self.add_string(Keys.General.SOURCE_DOI, doi)
def add_source_uuid(self, uuid: str) -> None:
self.add_string(Keys.General.SOURCE_UUID, uuid)
def add_source_repo_url(self, repo_url: str) -> None:
self.add_string(Keys.General.SOURCE_REPO_URL, repo_url)
def add_base_model_count(self, source_count: int) -> None:
self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count)
def add_base_model_name(self, source_id: int, name: str) -> None:
self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name)
def add_base_model_author(self, source_id: int, author: str) -> None:
self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author)
def add_base_model_version(self, source_id: int, version: str) -> None:
self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version)
def add_base_model_organization(self, source_id: int, organization: str) -> None:
self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
def add_base_model_url(self, source_id: int, url: str) -> None:
self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
def add_base_model_doi(self, source_id: int, doi: str) -> None:
self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi)
def add_base_model_uuid(self, source_id: int, uuid: str) -> None:
self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid)
def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
def add_tags(self, tags: Sequence[str]) -> None:
self.add_array(Keys.General.TAGS, tags)
def add_languages(self, languages: Sequence[str]) -> None:
self.add_array(Keys.General.LANGUAGES, languages)
def add_datasets(self, datasets: Sequence[str]) -> None:
self.add_array(Keys.General.DATASETS, datasets)
def add_tensor_data_layout(self, layout: str) -> None:
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_vocab_size(self, size: int) -> None:
self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
def add_context_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
def add_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
def add_leading_dense_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
if isinstance(length, int):
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
else:
self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_shared_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_decoder_start_token_id(self, id: int) -> None:
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
def add_head_count(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
def add_value_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
def add_max_alibi_bias(self, bias: float) -> None:
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
def add_clamp_kqv(self, value: float) -> None:
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
def add_logit_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
def add_attn_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_final_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_expert_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
def add_expert_used_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
def add_expert_shared_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_q_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_relative_attn_buckets_count(self, value: int) -> None:
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
def add_sliding_window(self, value: int) -> None:
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
def add_rope_dimension_count(self, count: int) -> None:
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_freq_base(self, value: float) -> None:
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
def add_rope_scaling_type(self, value: RopeScalingType) -> None:
self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
def add_rope_scaling_factor(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_attn_factors(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
def add_rope_scaling_finetuned(self, value: bool) -> None:
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
def add_ssm_inner_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)
def add_ssm_state_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)
def add_ssm_time_step_rank(self, value: int) -> None:
self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str) -> None:
self.add_string(Keys.Tokenizer.MODEL, model)
def add_tokenizer_pre(self, pre: str) -> None:
self.add_string(Keys.Tokenizer.PRE, pre)
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
self.add_array(Keys.Tokenizer.LIST, tokens)
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
self.add_array(Keys.Tokenizer.MERGES, merges)
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
def add_token_type_count(self, value: int) -> None:
self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)
def add_token_scores(self, scores: Sequence[float]) -> None:
self.add_array(Keys.Tokenizer.SCORES, scores)
def add_bos_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.BOS_ID, id)
def add_eos_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOS_ID, id)
def add_unk_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.UNK_ID, id)
def add_sep_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.SEP_ID, id)
def add_pad_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
def add_cls_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.CLS_ID, id)
def add_mask_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.MASK_ID, id)
def add_add_bos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_BOS, value)
def add_add_eos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
def add_remove_extra_whitespaces(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
if not isinstance(value, str):
template_default = None
template_names = set()
for choice in value:
name = choice.get('name', '')
template = choice.get('template')
# Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
name = ''.join((c if c in ascii_letters + digits else '_' for c in name))
if name and template is not None:
if name == 'default':
template_default = template
else:
template_names.add(name)
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)
if template_names:
self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))
if template_default is None:
return
value = template_default
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
def add_prefix_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)
def add_suffix_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)
def add_middle_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)
def add_eot_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOT_ID, id)
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = ''
if not skip_pack_prefix:
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
return struct.pack(f'{pack_prefix}{fmt}', value)
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
kv_data = bytearray()
if add_vtype:
kv_data += self._pack("I", vtype)
pack_fmt = self._simple_value_packing.get(vtype)
if pack_fmt is not None:
kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf-8") if isinstance(val, str) else val
kv_data += self._pack("Q", len(encoded_val))
kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY:
if not isinstance(val, Sequence):
raise ValueError("Invalid GGUF metadata array, expecting sequence")
if len(val) == 0:
raise ValueError("Invalid GGUF metadata array. Empty array")
if isinstance(val, bytes):
ltype = GGUFValueType.UINT8
else:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
kv_data += self._pack("I", ltype)
kv_data += self._pack("Q", len(val))
for item in val:
kv_data += self._pack_val(item, ltype, add_vtype=False)
else:
raise ValueError("Invalid GGUF metadata value type or value")
return kv_data
@staticmethod
def format_n_bytes_to_str(num: int) -> str:
if num == 0:
return "negligible - metadata only"
fnum = float(num)
for unit in ("", "K", "M", "G"):
if abs(fnum) < 1000.0:
return f"{fnum:3.1f}{unit}"
fnum /= 1000.0
return f"{fnum:.1f}T - over 1TB, split recommended"

211
src/gguf-py/gguf/lazy.py Normal file
View File

@ -0,0 +1,211 @@
from __future__ import annotations
from abc import ABC, ABCMeta, abstractmethod
import logging
from typing import Any, Callable
import numpy as np
from numpy.typing import DTypeLike
logger = logging.getLogger(__name__)
class LazyMeta(ABCMeta):
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
def __getattr__(self, name: str) -> Any:
meta_attr = getattr(self._meta, name)
if callable(meta_attr):
return type(self)._wrap_fn(
(lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
use_self=self,
)
elif isinstance(meta_attr, self._tensor_type):
# e.g. self.T with torch.Tensor should still be wrapped
return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
else:
# no need to wrap non-tensor properties,
# and they likely don't depend on the actual contents of the tensor
return meta_attr
namespace["__getattr__"] = __getattr__
# need to make a builder for the wrapped wrapper to copy the name,
# or else it fails with very cryptic error messages,
# because somehow the same string would end up in every closures
def mk_wrap(op_name: str, *, meta_noop: bool = False):
# need to wrap the wrapper to get self
def wrapped_special_op(self, *args, **kwargs):
return type(self)._wrap_fn(
getattr(type(self)._tensor_type, op_name),
meta_noop=meta_noop,
)(self, *args, **kwargs)
return wrapped_special_op
# special methods bypass __getattr__, so they need to be added manually
# ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
# NOTE: doing this from a metaclass is very convenient
# TODO: make this even more comprehensive
for binary_op in (
"lt", "le", "eq", "ne", "ge", "gt", "not"
"abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
"neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
"iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
"radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
):
attr_name = f"__{binary_op}__"
# the result of these operators usually has the same shape and dtype as the input,
# so evaluation on the meta tensor can be skipped.
namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)
for special_op in (
"getitem", "setitem", "len",
):
attr_name = f"__{special_op}__"
namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)
return super().__new__(cls, name, bases, namespace, **kwargs)
# Tree of lazy tensors
class LazyBase(ABC, metaclass=LazyMeta):
_tensor_type: type
_meta: Any
_data: Any | None
_args: tuple
_kwargs: dict[str, Any]
_func: Callable[[Any], Any] | None
def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
super().__init__()
self._meta = meta
self._data = data
self._args = args
self._kwargs = kwargs if kwargs is not None else {}
self._func = func
assert self._func is not None or self._data is not None
def __init_subclass__(cls) -> None:
if "_tensor_type" not in cls.__dict__:
raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
return super().__init_subclass__()
@staticmethod
def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
# TODO: dict and set
if isinstance(o, (list, tuple)):
L = []
for item in o:
L.append(LazyBase._recurse_apply(item, fn))
if isinstance(o, tuple):
L = tuple(L)
return L
elif isinstance(o, LazyBase):
return fn(o)
else:
return o
@classmethod
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
def wrapped_fn(*args, **kwargs):
if kwargs is None:
kwargs = {}
args = ((use_self,) if use_self is not None else ()) + args
meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
# TODO: maybe handle tensors in kwargs too
if isinstance(meta_noop, bool) and not meta_noop:
try:
res = fn(*meta_args, **kwargs)
except NotImplementedError:
# running some operations on PyTorch's Meta tensors can cause this exception
res = None
else:
# some operators don't need to actually run on the meta tensors
assert len(args) > 0
res = args[0]
assert isinstance(res, cls)
res = res._meta
# allow operations to override the dtype and shape
if meta_noop is not True:
if isinstance(meta_noop, tuple):
dtype, shape = meta_noop
assert callable(shape)
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
else:
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type):
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
else:
del res # not needed
# non-tensor return likely relies on the contents of the args
# (e.g. the result of torch.equal)
eager_args = cls.to_eager(args)
return fn(*eager_args, **kwargs)
return wrapped_fn
@classmethod
def to_eager(cls, t: Any) -> Any:
def simple_to_eager(_t: LazyBase) -> Any:
if _t._data is not None:
return _t._data
# NOTE: there's a recursion limit in Python (usually 1000)
assert _t._func is not None
_t._args = cls._recurse_apply(_t._args, simple_to_eager)
_t._data = _t._func(*_t._args, **_t._kwargs)
# sanity check
assert _t._data is not None
assert _t._data.dtype == _t._meta.dtype
assert _t._data.shape == _t._meta.shape
return _t._data
# recurse into lists and/or tuples, keeping their structure
return cls._recurse_apply(t, simple_to_eager)
@classmethod
def eager_to_meta(cls, t: Any) -> Any:
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
# must be overridden, meta tensor init is backend-specific
@classmethod
@abstractmethod
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
@classmethod
def from_eager(cls, t: Any) -> Any:
if type(t) is cls:
# already lazy
return t
elif isinstance(t, cls._tensor_type):
return cls(meta=cls.eager_to_meta(t), data=t)
else:
return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")
class LazyNumpyTensor(LazyBase):
_tensor_type = np.ndarray
@classmethod
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
# The initial idea was to use np.nan as the fill value,
# but non-float types like np.int16 can't use that.
# So zero it is.
cheat = np.zeros(1, dtype)
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
def astype(self, dtype, *args, **kwargs):
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
full_args = (self, dtype,) + args
return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
def tofile(self, *args, **kwargs):
eager = LazyNumpyTensor.to_eager(self)
return eager.tofile(*args, **kwargs)
# TODO: __array_function__

View File

@ -0,0 +1,503 @@
from __future__ import annotations
import re
import json
import yaml
import logging
from pathlib import Path
from typing import Any, Literal, Optional
from dataclasses import dataclass
from .constants import Keys
import gguf
logger = logging.getLogger("metadata")
@dataclass
class Metadata:
# Authorship Metadata to be written to GGUF KV Store
name: Optional[str] = None
author: Optional[str] = None
version: Optional[str] = None
organization: Optional[str] = None
finetune: Optional[str] = None
basename: Optional[str] = None
description: Optional[str] = None
quantized_by: Optional[str] = None
size_label: Optional[str] = None
url: Optional[str] = None
doi: Optional[str] = None
uuid: Optional[str] = None
repo_url: Optional[str] = None
source_url: Optional[str] = None
source_doi: Optional[str] = None
source_uuid: Optional[str] = None
source_repo_url: Optional[str] = None
license: Optional[str] = None
license_name: Optional[str] = None
license_link: Optional[str] = None
base_models: Optional[list[dict]] = None
tags: Optional[list[str]] = None
languages: Optional[list[str]] = None
datasets: Optional[list[str]] = None
@staticmethod
def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
# This grabs as many contextual authorship metadata as possible from the model repository
# making any conversion as required to match the gguf kv store metadata format
# as well as giving users the ability to override any authorship metadata that may be incorrect
# Create a new Metadata instance
metadata = Metadata()
model_card = Metadata.load_model_card(model_path)
hf_params = Metadata.load_hf_parameters(model_path)
# TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
# heuristics
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
# Metadata Override File Provided
# This is based on LLM_KV_NAMES mapping in llama.cpp
metadata_override = Metadata.load_metadata_override(metadata_override_path)
metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization)
metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune)
metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename)
metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description)
metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by)
metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label)
metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name)
metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link)
metadata.url = metadata_override.get(Keys.General.URL, metadata.url)
metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi)
metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid)
metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url)
metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url)
metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi)
metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid)
metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url)
# Base Models is received here as an array of models
metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets)
# Direct Metadata Override (via direct cli argument)
if model_name is not None:
metadata.name = model_name
return metadata
@staticmethod
def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]:
if metadata_override_path is None or not metadata_override_path.is_file():
return {}
with open(metadata_override_path, "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
if model_path is None or not model_path.is_dir():
return {}
model_card_path = model_path / "README.md"
if not model_card_path.is_file():
return {}
# The model card metadata is assumed to always be in YAML
# ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
with open(model_card_path, "r", encoding="utf-8") as f:
if f.readline() == "---\n":
raw = f.read().partition("---\n")[0]
data = yaml.safe_load(raw)
if isinstance(data, dict):
return data
else:
logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict")
return {}
else:
return {}
@staticmethod
def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:
if model_path is None or not model_path.is_dir():
return {}
config_path = model_path / "config.json"
if not config_path.is_file():
return {}
with open(config_path, "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def id_to_title(string):
# Convert capitalization into title form unless acronym or version number
return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()])
@staticmethod
def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]:
# Huggingface often store model id as '<org>/<model name>'
# so let's parse it and apply some heuristics if possible for model name components
if model_id is None:
# model ID missing
return None, None, None, None, None, None
if ' ' in model_id:
# model ID is actually a normal human sentence
# which means its most likely a normal model name only
# not part of the hugging face naming standard, but whatever
return model_id, None, None, None, None, None
if '/' in model_id:
# model ID (huggingface style)
org_component, model_full_name_component = model_id.split('/', 1)
else:
# model ID but missing org components
org_component, model_full_name_component = None, model_id
# Check if we erroneously matched against './' or '../' etc...
if org_component is not None and org_component[0] == '.':
org_component = None
name_parts: list[str] = model_full_name_component.split('-')
# Remove empty parts
for i in reversed(range(len(name_parts))):
if len(name_parts[i]) == 0:
del name_parts[i]
name_types: list[
set[Literal["basename", "size_label", "finetune", "version", "type"]]
] = [set() for _ in name_parts]
# Annotate the name
for i, part in enumerate(name_parts):
# Version
if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE):
name_types[i].add("version")
# Quant type (should not be there for base models, but still annotated)
elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE):
name_types[i].add("type")
name_parts[i] = part.upper()
# Model size
elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE):
part = part.replace("_", ".")
# Handle weird bloom-7b1 notation
if part[-1].isdecimal():
part = part[:-2] + "." + part[-1] + part[-2]
# Normalize the size suffixes
if len(part) > 1 and part[-2].isdecimal():
if part[-1] in "kmbt":
part = part[:-1] + part[-1].upper()
if total_params != 0:
try:
label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1]))
# Only use it as a size label if it's close or bigger than the model size
# Note that LoRA adapters don't necessarily include all layers,
# so this is why bigger label sizes are accepted.
# Do not use the size label when it's smaller than 1/8 of the model size
if (total_params < 0 and label_params < abs(total_params) // 8) or (
# Check both directions when the current model isn't a LoRA adapter
total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8
):
# Likely a context length
name_types[i].add("finetune")
# Lowercase the size when it's a context length
part = part[:-1] + part[-1].lower()
except ValueError:
# Failed to convert the size label to float, use it anyway
pass
if len(name_types[i]) == 0:
name_types[i].add("size_label")
name_parts[i] = part
# Some easy to recognize finetune names
elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
if total_params < 0 and part.lower() == "lora":
# ignore redundant "lora" in the finetune part when the output is a lora adapter
name_types[i].add("type")
else:
name_types[i].add("finetune")
# Ignore word-based size labels when there is at least a number-based one present
# TODO: should word-based size labels always be removed instead?
if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n):
for n, t in zip(name_parts, name_types):
if "size_label" in t:
if all(c.isalpha() for c in n):
t.remove("size_label")
at_start = True
# Find the basename through the annotated name
for part, t in zip(name_parts, name_types):
if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t):
t.add("basename")
else:
if at_start:
at_start = False
if len(t) == 0:
t.add("finetune")
# Remove the basename annotation from trailing version
for part, t in zip(reversed(name_parts), reversed(name_types)):
if "basename" in t and len(t) > 1:
t.remove("basename")
else:
break
basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
# Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys)
size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None
finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
# TODO: should the basename version always be excluded?
# NOTE: multiple finetune versions are joined together
version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None
if size_label is None and finetune is None and version is None:
# Too ambiguous, output nothing
basename = None
return model_full_name_component, org_component, basename, finetune, version, size_label
@staticmethod
def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata:
# Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Model Card Heuristics
########################
if model_card is not None:
if "model_name" in model_card and metadata.name is None:
# Not part of huggingface model card standard but notice some model creator using it
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
metadata.name = model_card.get("model_name")
if "model_creator" in model_card and metadata.author is None:
# Not part of huggingface model card standard but notice some model creator using it
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
metadata.author = model_card.get("model_creator")
if "model_type" in model_card and metadata.basename is None:
# Not part of huggingface model card standard but notice some model creator using it
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
metadata.basename = model_card.get("model_type")
if "base_model" in model_card:
# This represents the parent models that this is based on
# Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
# Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
metadata_base_models = []
base_model_value = model_card.get("base_model", None)
if base_model_value is not None:
if isinstance(base_model_value, str):
metadata_base_models.append(base_model_value)
elif isinstance(base_model_value, list):
metadata_base_models.extend(base_model_value)
if metadata.base_models is None:
metadata.base_models = []
for model_id in metadata_base_models:
# NOTE: model size of base model is assumed to be similar to the size of the current model
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
base_model = {}
if model_full_name_component is not None:
base_model["name"] = Metadata.id_to_title(model_full_name_component)
if org_component is not None:
base_model["organization"] = Metadata.id_to_title(org_component)
if version is not None:
base_model["version"] = version
if org_component is not None and model_full_name_component is not None:
base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
metadata.base_models.append(base_model)
if "license" in model_card and metadata.license is None:
metadata.license = model_card.get("license")
if "license_name" in model_card and metadata.license_name is None:
metadata.license_name = model_card.get("license_name")
if "license_link" in model_card and metadata.license_link is None:
metadata.license_link = model_card.get("license_link")
tags_value = model_card.get("tags", None)
if tags_value is not None:
if metadata.tags is None:
metadata.tags = []
if isinstance(tags_value, str):
metadata.tags.append(tags_value)
elif isinstance(tags_value, list):
metadata.tags.extend(tags_value)
pipeline_tags_value = model_card.get("pipeline_tag", None)
if pipeline_tags_value is not None:
if metadata.tags is None:
metadata.tags = []
if isinstance(pipeline_tags_value, str):
metadata.tags.append(pipeline_tags_value)
elif isinstance(pipeline_tags_value, list):
metadata.tags.extend(pipeline_tags_value)
language_value = model_card.get("languages", model_card.get("language", None))
if language_value is not None:
if metadata.languages is None:
metadata.languages = []
if isinstance(language_value, str):
metadata.languages.append(language_value)
elif isinstance(language_value, list):
metadata.languages.extend(language_value)
dataset_value = model_card.get("datasets", model_card.get("dataset", None))
if dataset_value is not None:
if metadata.datasets is None:
metadata.datasets = []
if isinstance(dataset_value, str):
metadata.datasets.append(dataset_value)
elif isinstance(dataset_value, list):
metadata.datasets.extend(dataset_value)
# Hugging Face Parameter Heuristics
####################################
if hf_params is not None:
hf_name_or_path = hf_params.get("_name_or_path")
if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1:
# Use _name_or_path only if its actually a model name and not some computer path
# e.g. 'meta-llama/Llama-2-7b-hf'
model_id = hf_name_or_path
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
if metadata.name is None and model_full_name_component is not None:
metadata.name = Metadata.id_to_title(model_full_name_component)
if metadata.organization is None and org_component is not None:
metadata.organization = Metadata.id_to_title(org_component)
if metadata.basename is None and basename is not None:
metadata.basename = basename
if metadata.finetune is None and finetune is not None:
metadata.finetune = finetune
if metadata.version is None and version is not None:
metadata.version = version
if metadata.size_label is None and size_label is not None:
metadata.size_label = size_label
# Directory Folder Name Fallback Heuristics
############################################
if model_path is not None:
model_id = model_path.name
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
if metadata.name is None and model_full_name_component is not None:
metadata.name = Metadata.id_to_title(model_full_name_component)
if metadata.organization is None and org_component is not None:
metadata.organization = Metadata.id_to_title(org_component)
if metadata.basename is None and basename is not None:
metadata.basename = basename
if metadata.finetune is None and finetune is not None:
metadata.finetune = finetune
if metadata.version is None and version is not None:
metadata.version = version
if metadata.size_label is None and size_label is not None:
metadata.size_label = size_label
return metadata
def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
assert self.name is not None
gguf_writer.add_name(self.name)
if self.author is not None:
gguf_writer.add_author(self.author)
if self.version is not None:
gguf_writer.add_version(self.version)
if self.organization is not None:
gguf_writer.add_organization(self.organization)
if self.finetune is not None:
gguf_writer.add_finetune(self.finetune)
if self.basename is not None:
gguf_writer.add_basename(self.basename)
if self.description is not None:
gguf_writer.add_description(self.description)
if self.quantized_by is not None:
gguf_writer.add_quantized_by(self.quantized_by)
if self.size_label is not None:
gguf_writer.add_size_label(self.size_label)
if self.license is not None:
gguf_writer.add_license(self.license)
if self.license_name is not None:
gguf_writer.add_license_name(self.license_name)
if self.license_link is not None:
gguf_writer.add_license_link(self.license_link)
if self.url is not None:
gguf_writer.add_url(self.url)
if self.doi is not None:
gguf_writer.add_doi(self.doi)
if self.uuid is not None:
gguf_writer.add_uuid(self.uuid)
if self.repo_url is not None:
gguf_writer.add_repo_url(self.repo_url)
if self.source_url is not None:
gguf_writer.add_source_url(self.source_url)
if self.source_doi is not None:
gguf_writer.add_source_doi(self.source_doi)
if self.source_uuid is not None:
gguf_writer.add_source_uuid(self.source_uuid)
if self.source_repo_url is not None:
gguf_writer.add_source_repo_url(self.source_repo_url)
if self.base_models is not None:
gguf_writer.add_base_model_count(len(self.base_models))
for key, base_model_entry in enumerate(self.base_models):
if "name" in base_model_entry:
gguf_writer.add_base_model_name(key, base_model_entry["name"])
if "author" in base_model_entry:
gguf_writer.add_base_model_author(key, base_model_entry["author"])
if "version" in base_model_entry:
gguf_writer.add_base_model_version(key, base_model_entry["version"])
if "organization" in base_model_entry:
gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
if "url" in base_model_entry:
gguf_writer.add_base_model_url(key, base_model_entry["url"])
if "doi" in base_model_entry:
gguf_writer.add_base_model_doi(key, base_model_entry["doi"])
if "uuid" in base_model_entry:
gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"])
if "repo_url" in base_model_entry:
gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
if self.tags is not None:
gguf_writer.add_tags(self.tags)
if self.languages is not None:
gguf_writer.add_languages(self.languages)
if self.datasets is not None:
gguf_writer.add_datasets(self.datasets)

121
src/gguf-py/gguf/quants.py Normal file
View File

@ -0,0 +1,121 @@
from __future__ import annotations
from typing import Callable, Sequence
from numpy.typing import DTypeLike
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
from .lazy import LazyNumpyTensor
import numpy as np
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.uint32)
# force nan to quiet
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n)
# round to nearest even
n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16
return n.astype(np.uint16)
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
rows = arr.reshape((-1, arr.shape[-1]))
osize = 1
for dim in oshape:
osize *= dim
out = np.empty(shape=osize, dtype=otype)
# compute over groups of 16 rows (arbitrary, but seems good for performance)
n_groups = (rows.shape[0] // 16) or 1
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
return out.reshape(oshape)
def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.uint16, oshape=n.shape)
__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.uint16)
def quantize_bf16(n: np.ndarray):
if type(n) is LazyNumpyTensor:
return __quantize_bf16_lazy(n)
else:
return __quantize_bf16_array(n)
__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
def can_quantize_to_q8_0(n: np.ndarray) -> bool:
return n.shape[-1] % __q8_block_size == 0
# round away from zero
# ref: https://stackoverflow.com/a/59143326/22827863
def np_roundf(n: np.ndarray) -> np.ndarray:
a = abs(n)
floored = np.floor(a)
b = floored + np.floor(2 * (a - floored))
return np.sign(n) * b
def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
shape = n.shape
assert shape[-1] % __q8_block_size == 0
n_blocks = n.size // __q8_block_size
blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
d = abs(blocks).max(axis=1, keepdims=True) / 127
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
qs = np_roundf(blocks * id)
# (n_blocks, 2)
d = d.astype(np.float16).view(np.uint8)
# (n_blocks, block_size)
qs = qs.astype(np.int8).view(np.uint8)
assert d.shape[1] + qs.shape[1] == __q8_type_size
return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
__quantize_q8_0_array,
meta_noop=(np.uint8, __quantize_q8_0_shape_change),
)
def quantize_q8_0(data: np.ndarray):
if type(data) is LazyNumpyTensor:
return __quantize_q8_0_lazy(data)
else:
return __quantize_q8_0_array(data)

View File

@ -0,0 +1,649 @@
from __future__ import annotations
from typing import Sequence
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
class TensorNameMap:
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Token embeddings
MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon
"wte", # gpt2
"transformer.embd.wte", # phi2
"model.tok_embeddings", # internlm2
"model.embedding", # mamba-qbert
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
"transformer.in_out_embed", # Grok
"embedding.word_embeddings", # chatglm
"transformer.token_embeddings", # openelm
"shared", # t5
),
# Token type embeddings
MODEL_TENSOR.TOKEN_TYPES: (
"embeddings.token_type_embeddings", # bert nomic-bert
),
# Normalization of token embeddings
MODEL_TENSOR.TOKEN_EMBD_NORM: (
"word_embeddings_layernorm", # bloom
"embeddings.LayerNorm", # bert
"emb_ln", # nomic-bert
"transformer.norm", # openelm
),
# Position embeddings
MODEL_TENSOR.POS_EMBD: (
"transformer.wpe", # gpt2
"embeddings.position_embeddings", # bert
"wpe", # gpt2
),
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
"output_layer", # chatglm
),
# Output norm
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais
"model.norm", # llama-hf baichuan internlm2
"norm", # llama-pth
"transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2
"language_model.encoder.final_layernorm", # persimmon
"model.final_layernorm", # persimmon
"lm_head.ln", # phi2
"model.norm_f", # mamba-qbert
"backbone.norm_f", # mamba
"transformer.rms_norm", # Grok
"encoder.final_layernorm", # chatglm
"transformer.norm", # openelm
),
# Rope frequencies
MODEL_TENSOR.ROPE_FREQS: (
"rope.freqs", # llama-pth
"rotary_pos_emb.inv_freq", # chatglm
),
}
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
"transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
"transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf
"layers.{bid}.attention_norm", # llama-pth
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
"h.{bid}.ln_1", # gpt2
"transformer.h.{bid}.ln", # phi2
"model.layers.layers.{bid}.norm", # plamo
"model.layers.{bid}.attention_norm", # internlm2
"model.layers.{bid}.norm", # mamba-qbert
"backbone.layers.{bid}.norm", # mamba
"transformer.decoder_layer.{bid}.rms_norm", # Grok
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"encoder.layers.{bid}.input_layernorm", # chatglm
"transformer.layers.{bid}.attn_norm", # openelm
),
# Attention norm 2
MODEL_TENSOR.ATTN_NORM_2: (
"transformer.h.{bid}.ln_attn", # falcon40b
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code
),
# Attention query-key-value
MODEL_TENSOR.ATTN_QKV: (
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
"transformer.blocks.{bid}.attn.Wqkv", # mpt
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
"transformer.h.{bid}.self_attention.query_key_value", # falcon
"h.{bid}.self_attention.query_key_value", # bloom
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
"model.layers.{bid}.self_attn.query_key_value", # persimmon
"h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm
),
# Attention query
MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
),
# Attention key
MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
"transformer.h.{bid}.attn.k", # refact
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
"model.layers.{bid}.attention.wk", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
),
# Attention value
MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
"transformer.h.{bid}.attn.v", # refact
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
"model.layers.{bid}.attention.wv", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
),
# Attention output
MODEL_TENSOR.ATTN_OUT: (
"gpt_neox.layers.{bid}.attention.dense", # gptneox
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"model.layers.{bid}.self_attn.dense", # persimmon
"h.{bid}.attn.c_proj", # gpt2
"transformer.h.{bid}.mixer.out_proj", # phi2
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
"model.layers.{bid}.attention.wo", # internlm2
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
"encoder.layers.{bid}.self_attention.dense", # chatglm
"transformer.layers.{bid}.attn.out_proj", # openelm
),
# Attention output norm
MODEL_TENSOR.ATTN_OUT_NORM: (
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
"encoder.layers.{bid}.norm1", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
),
MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2
),
# Rotary embeddings
MODEL_TENSOR.ATTN_ROT_EMBD: (
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
"model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
"transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
),
# Feed-forward norm
MODEL_TENSOR.FFN_NORM: (
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf
"layers.{bid}.ffn_norm", # llama-pth
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
"transformer.layers.{bid}.ffn_norm", # openelm
),
# Post feed-forward norm
MODEL_TENSOR.FFN_PRE_NORM: (
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2
),
# Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
),
MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
"model.layers.{bid}.mlp.gate", # qwen2moe
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
),
# Feed-forward up
MODEL_TENSOR.FFN_UP: (
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
"transformer.h.{bid}.mlp.c_fc", # gpt2 jais
"transformer.blocks.{bid}.ffn.up_proj", # mpt
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"h.{bid}.mlp.dense_h_to_4h", # bloom
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
"layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
"transformer.h.{bid}.mlp.linear_3", # refact
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen
"h.{bid}.mlp.c_fc", # gpt2
"transformer.h.{bid}.mlp.fc1", # phi2
"model.layers.{bid}.mlp.fc1", # phi2
"model.layers.{bid}.mlp.gate_up_proj", # phi3
"model.layers.layers.{bid}.mlp.up_proj", # plamo
"model.layers.{bid}.feed_forward.w3", # internlm2
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
),
MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
),
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
),
# AWQ-activation gate
MODEL_TENSOR.FFN_ACT: (
"transformer.blocks.{bid}.ffn.act", # mpt
),
# Feed-forward gate
MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
"transformer.h.{bid}.mlp.c_fc2", # jais
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
"model.layers.{bid}.feed_forward.w1", # internlm2
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
),
MODEL_TENSOR.FFN_GATE_EXP: (
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
),
# Feed-forward down
MODEL_TENSOR.FFN_DOWN: (
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
"transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom
"model.layers.{bid}.mlp.down_proj", # llama-hf
"layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"h.{bid}.mlp.c_proj", # gpt2
"transformer.h.{bid}.mlp.fc2", # phi2
"model.layers.{bid}.mlp.fc2", # phi2
"model.layers.layers.{bid}.mlp.down_proj", # plamo
"model.layers.{bid}.feed_forward.w2", # internlm2
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"transformer.layers.{bid}.ffn.proj_2", # openelm
"model.layers.{bid}.residual_mlp.w2", # arctic
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
),
MODEL_TENSOR.FFN_DOWN_EXP: (
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_NORM: (
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
),
MODEL_TENSOR.ATTN_K_NORM: (
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm
),
MODEL_TENSOR.ROPE_FREQS: (
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
),
MODEL_TENSOR.LAYER_OUT_NORM: (
"encoder.layer.{bid}.output.LayerNorm", # bert
"encoder.layers.{bid}.norm2", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
"encoder.layer.{bid}.layer_norm_2" # jina-v2-code
),
MODEL_TENSOR.SSM_IN: (
"model.layers.{bid}.in_proj",
"backbone.layers.{bid}.mixer.in_proj",
),
MODEL_TENSOR.SSM_CONV1D: (
"model.layers.{bid}.conv1d",
"backbone.layers.{bid}.mixer.conv1d",
),
MODEL_TENSOR.SSM_X: (
"model.layers.{bid}.x_proj",
"backbone.layers.{bid}.mixer.x_proj",
),
MODEL_TENSOR.SSM_DT: (
"model.layers.{bid}.dt_proj",
"backbone.layers.{bid}.mixer.dt_proj",
),
MODEL_TENSOR.SSM_A: (
"model.layers.{bid}.A_log",
"backbone.layers.{bid}.mixer.A_log",
),
MODEL_TENSOR.SSM_D: (
"model.layers.{bid}.D",
"backbone.layers.{bid}.mixer.D",
),
MODEL_TENSOR.SSM_OUT: (
"model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj",
),
MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_B: (
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_MQA: (
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
),
MODEL_TENSOR.ATTN_KV_B: (
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
),
MODEL_TENSOR.ATTN_SUB_NORM: (
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
),
MODEL_TENSOR.FFN_SUB_NORM: (
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
),
MODEL_TENSOR.DEC_ATTN_NORM: (
"decoder.block.{bid}.layer.0.layer_norm", # t5
),
MODEL_TENSOR.DEC_ATTN_Q: (
"decoder.block.{bid}.layer.0.SelfAttention.q", # t5
),
MODEL_TENSOR.DEC_ATTN_K: (
"decoder.block.{bid}.layer.0.SelfAttention.k", # t5
),
MODEL_TENSOR.DEC_ATTN_V: (
"decoder.block.{bid}.layer.0.SelfAttention.v", # t5
),
MODEL_TENSOR.DEC_ATTN_OUT: (
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5
),
MODEL_TENSOR.DEC_ATTN_REL_B: (
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
"decoder.block.{bid}.layer.1.layer_norm", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.DEC_FFN_NORM: (
"decoder.block.{bid}.layer.2.layer_norm", # t5
),
MODEL_TENSOR.DEC_FFN_GATE: (
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
),
MODEL_TENSOR.DEC_FFN_UP: (
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
),
MODEL_TENSOR.DEC_FFN_DOWN: (
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
),
MODEL_TENSOR.DEC_OUTPUT_NORM: (
"decoder.final_layer_norm", # t5
),
MODEL_TENSOR.ENC_ATTN_NORM: (
"encoder.block.{bid}.layer.0.layer_norm", # t5
),
MODEL_TENSOR.ENC_ATTN_Q: (
"encoder.block.{bid}.layer.0.SelfAttention.q", # t5
),
MODEL_TENSOR.ENC_ATTN_K: (
"encoder.block.{bid}.layer.0.SelfAttention.k", # t5
),
MODEL_TENSOR.ENC_ATTN_V: (
"encoder.block.{bid}.layer.0.SelfAttention.v", # t5
),
MODEL_TENSOR.ENC_ATTN_OUT: (
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5
),
MODEL_TENSOR.ENC_ATTN_REL_B: (
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.ENC_FFN_NORM: (
"encoder.block.{bid}.layer.1.layer_norm", # t5
),
MODEL_TENSOR.ENC_FFN_GATE: (
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
),
MODEL_TENSOR.ENC_FFN_UP: (
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
),
MODEL_TENSOR.ENC_FFN_DOWN: (
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
),
MODEL_TENSOR.ENC_OUTPUT_NORM: (
"encoder.final_layer_norm", # t5
),
}
# architecture-specific block mappings
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
MODEL_ARCH.ARCTIC: {
MODEL_TENSOR.FFN_NORM: (
"model.layers.{bid}.residual_layernorm",
),
MODEL_TENSOR.FFN_NORM_EXP: (
"model.layers.{bid}.post_attention_layernorm",
),
},
}
mapping: dict[str, tuple[MODEL_TENSOR, str]]
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
self.mapping = {}
for tensor, keys in self.mappings_cfg.items():
if tensor not in MODEL_TENSORS[arch]:
continue
tensor_name = TENSOR_NAMES[tensor]
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
self.mapping[key] = (tensor, tensor_name)
if arch in self.arch_block_mappings_cfg:
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
for bid in range(n_blocks):
for tensor, keys in self.block_mappings_cfg.items():
if tensor not in MODEL_TENSORS[arch]:
continue
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
key = key.format(bid = bid)
self.mapping[key] = (tensor, tensor_name)
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
result = self.mapping.get(key)
if result is not None:
return result
for suffix in try_suffixes:
if key.endswith(suffix):
result = self.mapping.get(key[:-len(suffix)])
if result is not None:
return result[0], result[1] + suffix
return None
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
if result is None:
return None
return result[1]
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
if result is None:
return None
return result[0]
def __getitem__(self, key: str) -> str:
try:
return self.mapping[key][1]
except KeyError:
raise KeyError(key)
def __contains__(self, key: str) -> bool:
return key in self.mapping
def __repr__(self) -> str:
return repr(self.mapping)
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
return TensorNameMap(arch, n_blocks)

View File

@ -0,0 +1,69 @@
from __future__ import annotations
from typing import Literal
def fill_templated_filename(filename: str, output_type: str | None) -> str:
# Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf'
ftype_lowercase: str = output_type.lower() if output_type is not None else ""
ftype_uppercase: str = output_type.upper() if output_type is not None else ""
return filename.format(ftype_lowercase,
outtype=ftype_lowercase, ftype=ftype_lowercase,
OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase)
def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str:
if model_params_count > 1e12 :
# Trillions Of Parameters
scaled_model_params = model_params_count * 1e-12
scale_suffix = "T"
elif model_params_count > 1e9 :
# Billions Of Parameters
scaled_model_params = model_params_count * 1e-9
scale_suffix = "B"
elif model_params_count > 1e6 :
# Millions Of Parameters
scaled_model_params = model_params_count * 1e-6
scale_suffix = "M"
else:
# Thousands Of Parameters
scaled_model_params = model_params_count * 1e-3
scale_suffix = "K"
fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0)
return f"{scaled_model_params:.{fix}f}{scale_suffix}"
def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str:
if expert_count > 0:
pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2)
size_class = f"{expert_count}x{pretty_size}"
else:
size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2)
return size_class
def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str:
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
if base_name is not None:
name = base_name.strip().replace(' ', '-').replace('/', '-')
elif model_name is not None:
name = model_name.strip().replace(' ', '-').replace('/', '-')
else:
name = "ggml-model"
parameters = f"-{size_label}" if size_label is not None else ""
finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else ""
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else ""
kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else ""
return f"{name}{parameters}{finetune}{version}{encoding}{kind}"

465
src/gguf-py/gguf/vocab.py Normal file
View File

@ -0,0 +1,465 @@
from __future__ import annotations
import re
import logging
import json
import os
from pathlib import Path
from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable
from sentencepiece import SentencePieceProcessor
import gguf
from .gguf_writer import GGUFWriter
logger = logging.getLogger(__name__)
class SpecialVocab:
merges: list[str]
add_special_token: dict[str, bool]
special_token_ids: dict[str, int]
chat_template: str | Sequence[Mapping[str, str]] | None
def __init__(
self, path: str | os.PathLike[str], load_merges: bool = False,
special_token_types: Iterable[str] | None = None,
n_vocab: int | None = None,
):
self.special_token_ids = {}
self.add_special_token = {}
self.n_vocab = n_vocab
self.load_merges = load_merges
self.merges = []
self.chat_template = None
if special_token_types is not None:
self.special_token_types = special_token_types
else:
self.special_token_types = ('bos', 'eos', 'unk', 'sep', 'pad', 'cls', 'mask')
self._load(Path(path))
def __repr__(self) -> str:
return '<SpecialVocab with {} merges, special tokens {}, add special tokens {}>'.format(
len(self.merges), self.special_token_ids or "unset", self.add_special_token or "unset",
)
def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
if self.merges:
if not quiet:
logger.info(f'Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges)
elif self.load_merges:
logger.warning('Adding merges requested but no merges found, output may be non-functional.')
for typ, tokid in self.special_token_ids.items():
id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
if id_handler is None:
logger.warning(f'No handler for special token type {typ} with id {tokid} - skipping')
continue
if not quiet:
logger.info(f'Setting special token type {typ} to {tokid}')
id_handler(tokid)
for typ, value in self.add_special_token.items():
add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None)
if add_handler is None:
logger.warning(f'No handler for add_{typ}_token with value {value} - skipping')
continue
if not quiet:
logger.info(f'Setting add_{typ}_token to {value}')
add_handler(value)
if self.chat_template is not None:
if not quiet:
logger.info(f'Setting chat_template to {self.chat_template}')
gw.add_chat_template(self.chat_template)
def _load(self, path: Path) -> None:
self._try_load_from_tokenizer_json(path)
self._try_load_from_config_json(path)
if self.load_merges and not self.merges:
self._try_load_merges_txt(path)
def _try_load_merges_txt(self, path: Path) -> bool:
merges_file = path / 'merges.txt'
if not merges_file.is_file():
return False
with open(merges_file, 'r', encoding = 'utf-8') as fp:
first_line = next(fp, '').strip()
if not first_line.startswith('#'):
fp.seek(0)
line_num = 0
else:
line_num = 1
merges = []
for line in fp:
line_num += 1
line = line.strip()
if not line:
continue
parts = line.split(None, 3)
if len(parts) != 2:
logger.warning(f'{merges_file.name}: Line {line_num}: Entry malformed, ignoring')
continue
merges.append(f'{parts[0]} {parts[1]}')
self.merges = merges
return True
def _set_special_token(self, typ: str, tid: Any) -> None:
if not isinstance(tid, int):
return
if tid < 0:
raise ValueError(f'invalid value for special token type {typ}: {tid}')
if self.n_vocab is None or tid < self.n_vocab:
if typ in self.special_token_ids:
return
self.special_token_ids[typ] = tid
return
logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping')
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json'
if tokenizer_file.is_file():
with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and merges and isinstance(merges[0], str):
self.merges = merges
added_tokens = tokenizer.get('added_tokens', {})
else:
added_tokens = {}
tokenizer_config_file = path / 'tokenizer_config.json'
if not tokenizer_config_file.is_file():
return True
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
chat_template = tokenizer_config.get('chat_template')
if chat_template is None or isinstance(chat_template, (str, list)):
self.chat_template = chat_template
else:
logger.warning(f'Bad type for chat_template field in {tokenizer_config_file!r} - ignoring')
for typ in self.special_token_types:
add_entry = tokenizer_config.get(f'add_{typ}_token')
if isinstance(add_entry, bool):
self.add_special_token[typ] = add_entry
entry = tokenizer_config.get(f'{typ}_token')
if isinstance(entry, str):
tc_content = entry
elif isinstance(entry, dict):
entry_content = entry.get('content')
if not isinstance(entry_content, str):
continue
tc_content = entry_content
else:
continue
# We only need the first match here.
maybe_token_id = next(
(atok.get('id') for atok in added_tokens if atok.get('content') == tc_content),
None,
)
self._set_special_token(typ, maybe_token_id)
return True
def _try_load_from_config_json(self, path: Path) -> bool:
config_file = path / 'config.json'
if not config_file.is_file():
return False
with open(config_file, encoding = 'utf-8') as f:
config = json.load(f)
for typ in self.special_token_types:
self._set_special_token(typ, config.get(f'{typ}_token_id'))
return True
@runtime_checkable
class BaseVocab(Protocol):
tokenizer_model: ClassVar[str]
name: ClassVar[str]
@runtime_checkable
class Vocab(BaseVocab, Protocol):
vocab_size: int
added_tokens_dict: dict[str, int]
added_tokens_list: list[str]
fname_tokenizer: Path
def __init__(self, base_path: Path): ...
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
class NoVocab(BaseVocab):
tokenizer_model = "no_vocab"
name = "no_vocab"
def __repr__(self) -> str:
return "<NoVocab for a model without integrated vocabulary>"
class BpeVocab(Vocab):
tokenizer_model = "gpt2"
name = "bpe"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'vocab.json').exists():
# "slow" tokenizer
with open(fname_tokenizer, encoding="utf-8") as f:
self.vocab = json.load(f)
try:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
else:
# "fast" tokenizer
fname_tokenizer = base_path / 'tokenizer.json'
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding="utf-8") as f:
tokenizer_json = json.load(f)
tokenizer_model: dict[str, Any] = tokenizer_json['model']
if (
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'ByteLevel'
):
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
self.vocab = tokenizer_model["vocab"]
if (added := tokenizer_json.get('added_tokens')) is not None:
# Added tokens here can be duplicates of the main vocabulary.
added_tokens = {item['content']: item['id']
for item in added
if item['content'] not in self.vocab}
vocab_size = len(self.vocab)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
for i, _ in enumerate(self.vocab):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab(Vocab):
tokenizer_model = "llama"
name = "spm"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
# normal location
try:
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
# not found in alternate location either
raise FileNotFoundError('Cannot find tokenizer.model')
self.sentencepiece_tokenizer = SentencePieceProcessor()
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
vocab_size = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_dict = added_tokens
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(i)
text = piece.encode("utf-8")
score: float = tokenizer.GetScore(i)
toktype = gguf.TokenType.NORMAL
if tokenizer.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.IsControl(i):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.IsUnused(i):
toktype = gguf.TokenType.UNUSED
if tokenizer.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class LlamaHfVocab(Vocab):
tokenizer_model = "llama"
name = "hfft"
def __init__(self, base_path: Path):
fname_tokenizer = base_path / 'tokenizer.json'
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding='utf-8') as f:
tokenizer_json = json.load(f)
# pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model']
is_llama3 = (
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
and not tokenizer_model.get('byte_fallback', True)
)
if is_llama3:
raise TypeError('Llama 3 must be converted with BpeVocab')
if not is_llama3 and (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence'
):
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use LlamaHfVocab, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
# Allow the tokenizer to default to slow or fast versions.
# Explicitly set tokenizer to use local paths.
self.tokenizer = AutoTokenizer.from_pretrained(
base_path,
cache_dir=base_path,
local_files_only=True,
)
assert self.tokenizer.is_fast # assume tokenizer.json is used
# Initialize lists and dictionaries for added tokens
self.added_tokens_list = []
self.added_tokens_dict = dict()
self.added_tokens_ids = set()
# Process added tokens
for tok, tokidx in sorted(
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
):
# Only consider added tokens that are not in the base vocabulary
if tokidx >= self.tokenizer.vocab_size:
self.added_tokens_list.append(tok)
self.added_tokens_dict[tok] = tokidx
self.added_tokens_ids.add(tokidx)
# Store special tokens and their IDs
self.specials = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids = set(self.tokenizer.all_special_ids)
# Set vocabulary sizes
self.vocab_size_base = self.tokenizer.vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
}
for token_id in range(self.vocab_size_base):
# Skip processing added tokens here
if token_id in self.added_tokens_ids:
continue
# Convert token text to bytes
token_text = reverse_vocab[token_id].encode("utf-8")
# Yield token text, score, and type
yield token_text, self.get_token_score(token_id), self.get_token_type(
token_id, token_text, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
# Special case for byte tokens
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
return gguf.TokenType.BYTE
# Determine token type based on whether it's a special token
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
def get_token_score(self, token_id: int) -> float:
# Placeholder for actual logic to determine the token's score
# This needs to be implemented based on specific requirements
return -1000.0 # Default score
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self):
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"

View File

@ -169,7 +169,7 @@ def __init__(self):
self.CONTEXT_SIZE = "" self.CONTEXT_SIZE = ""
self.CONTEXT_SIZE_FOR_IMATRIX = "" self.CONTEXT_SIZE_FOR_IMATRIX = ""
self.THREADS = "" self.THREADS = ""
self.NUMBER_OF_THREADS_FOR_IMATRIX = "" self.NUMBER_OF_THREADS_FOR_IMATRIX = ""
class _English(_Localization): class _English(_Localization):
def __init__(self): def __init__(self):
@ -335,6 +335,7 @@ def __init__(self):
self.HOW_OFTEN_TO_SAVE_IMATRIX = "How often to save the IMatrix" self.HOW_OFTEN_TO_SAVE_IMATRIX = "How often to save the IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Set GPU offload value (-ngl)" self.SET_GPU_OFFLOAD_VALUE = "Set GPU offload value (-ngl)"
self.COMPLETED = "Completed" self.COMPLETED = "Completed"
# TODO: Add the following keys to other languages
self.REFRESH_MODELS = "Refresh Models" self.REFRESH_MODELS = "Refresh Models"
self.EXTRA_ARGUMENTS = "Extra Arguments:" self.EXTRA_ARGUMENTS = "Extra Arguments:"
self.EXTRA_ARGUMENTS_LABEL = "Additional command-line arguments" self.EXTRA_ARGUMENTS_LABEL = "Additional command-line arguments"
@ -342,6 +343,59 @@ def __init__(self):
self.CONTEXT_SIZE_FOR_IMATRIX = "Context size for IMatrix generation" self.CONTEXT_SIZE_FOR_IMATRIX = "Context size for IMatrix generation"
self.THREADS = "Threads:" self.THREADS = "Threads:"
self.NUMBER_OF_THREADS_FOR_IMATRIX = "Number of threads for IMatrix generation" self.NUMBER_OF_THREADS_FOR_IMATRIX = "Number of threads for IMatrix generation"
self.LORA_CONVERSION = "LoRA Conversion"
self.LORA_INPUT_PATH = "LoRA Input Path"
self.LORA_OUTPUT_PATH = "LoRA Output Path"
self.SELECT_LORA_INPUT_DIRECTORY = "Select LoRA Input Directory"
self.SELECT_LORA_OUTPUT_FILE = "Select LoRA Output File"
self.CONVERT_LORA = "Convert LoRA"
self.STARTING_LORA_CONVERSION = "Starting LoRA Conversion"
self.LORA_INPUT_PATH_REQUIRED = "LoRA input path is required."
self.LORA_OUTPUT_PATH_REQUIRED = "LoRA output path is required."
self.ERROR_STARTING_LORA_CONVERSION = "Error starting LoRA conversion: {}"
self.LORA_CONVERSION_TASK_STARTED = "LoRA conversion task started."
self.BIN_FILES = "Binary Files (*.bin)"
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = "Browsing for LoRA input directory..."
self.BROWSING_FOR_LORA_OUTPUT_FILE = "Browsing for LoRA output file..."
self.CONVERTING_LORA = "LoRA Conversion"
self.LORA_CONVERSION_FINISHED = "LoRA conversion finished."
self.LORA_FILE_MOVED = "LoRA file moved from {} to {}."
self.LORA_FILE_NOT_FOUND = "LoRA file not found: {}."
self.ERROR_MOVING_LORA_FILE = "Error moving LoRA file: {}"
self.EXPORT_LORA = "Export LoRA"
self.MODEL_PATH_REQUIRED = "Model path is required."
self.OUTPUT_PATH_REQUIRED = "Output path is required."
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = "At least one LoRA adapter is required."
self.INVALID_LORA_SCALE_VALUE = "Invalid LoRA scale value."
self.ERROR_STARTING_LORA_EXPORT = "Error starting LoRA export: {}"
self.LORA_EXPORT_TASK_STARTED = "LoRA export task started."
self.GGML_LORA_ADAPTERS = "GGML LoRA Adapters"
self.SELECT_LORA_ADAPTER_FILES = "Select LoRA Adapter Files"
self.ADD_ADAPTER = "Add Adapter"
self.DELETE_ADAPTER = "Delete"
self.LORA_SCALE = "LoRA Scale"
self.ENTER_LORA_SCALE_VALUE = "Enter LoRA Scale Value (Optional)"
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = "Number of Threads for LoRA Export"
self.EXPORTING_LORA = "Exporting LoRA..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = "Browsing for Export LoRA Model File..."
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = "Browsing for Export LoRA Output File..."
self.ADDING_LORA_ADAPTER = "Adding LoRA Adapter..."
self.DELETING_LORA_ADAPTER = "Deleting LoRA Adapter..."
self.LORA_FILES = "LoRA Files (*.bin)"
self.SELECT_LORA_ADAPTER_FILE = "Select LoRA Adapter File"
self.STARTING_LORA_EXPORT = "Starting LoRA export..."
self.OUTPUT_TYPE = "Output Type"
self.SELECT_OUTPUT_TYPE = "Select Output Type (GGUF or GGML)"
self.GGUF_AND_BIN_FILES = "GGUF and Binary Files (*.gguf *.bin)"
self.BASE_MODEL = "Base Model"
self.SELECT_BASE_MODEL_FILE = "Select Base Model File (GGUF)"
self.BASE_MODEL_PATH_REQUIRED = "Base model path is required for GGUF output."
self.BROWSING_FOR_BASE_MODEL_FILE = "Browsing for base model file..."
self.SELECT_BASE_MODEL_FOLDER = "Select Base Model Folder (containing safetensors)"
self.BROWSING_FOR_BASE_MODEL_FOLDER = "Browsing for base model folder..."
self.LORA_CONVERSION_FROM_TO = "LoRA Conversion from {} to {}"
self.GENERATING_IMATRIX_FOR = "Generating IMatrix for {}"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = "Model path is required for IMatrix generation."
class _French: class _French:
# French localization # French localization