mirror of https://github.com/leafspark/AutoGGUF
refactor: move functions to helper modules
- move functions to helper modules - set radon to lenient (E) - disable pre-commit workflow - adjust module importing
This commit is contained in:
parent
000ca6bb1f
commit
9d939151de
|
@ -38,10 +38,10 @@ jobs:
|
|||
|
||||
if [ -n "$CHANGED_FILES" ]; then
|
||||
echo "Running Cyclomatic Complexity check..."
|
||||
radon cc $CHANGED_FILES -a -s -n D --exclude "AutoGGUF.quantize_model"
|
||||
radon cc $CHANGED_FILES -a -s -n E --exclude "AutoGGUF.quantize_model"
|
||||
|
||||
echo "Running Maintainability Index check..."
|
||||
radon mi $CHANGED_FILES -s -n D
|
||||
radon mi $CHANGED_FILES -s -n E
|
||||
else
|
||||
echo "No Python files to analyze."
|
||||
fi
|
||||
|
@ -56,8 +56,8 @@ jobs:
|
|||
fi
|
||||
|
||||
if [ -n "$CHANGED_FILES" ]; then
|
||||
CC_OUTPUT=$(radon cc $CHANGED_FILES -a -s -n D --exclude "AutoGGUF.quantize_model")
|
||||
MI_OUTPUT=$(radon mi $CHANGED_FILES -s -n D)
|
||||
CC_OUTPUT=$(radon cc $CHANGED_FILES -a -s -n E --exclude "AutoGGUF.quantize_model")
|
||||
MI_OUTPUT=$(radon mi $CHANGED_FILES -s -n E)
|
||||
|
||||
if [ -n "$CC_OUTPUT" ] || [ -n "$MI_OUTPUT" ]; then
|
||||
echo "Radon detected code complexity or maintainability issues:"
|
||||
|
|
194
src/AutoGGUF.py
194
src/AutoGGUF.py
|
@ -1,26 +1,26 @@
|
|||
import json
|
||||
import re
|
||||
import shutil
|
||||
from datetime import datetime
|
||||
|
||||
import psutil
|
||||
import requests
|
||||
from functools import partial
|
||||
from PySide6.QtCore import *
|
||||
from PySide6.QtGui import *
|
||||
from PySide6.QtWidgets import *
|
||||
|
||||
from DownloadThread import DownloadThread
|
||||
from GPUMonitor import GPUMonitor
|
||||
from KVOverrideEntry import KVOverrideEntry
|
||||
from Logger import Logger
|
||||
from ModelInfoDialog import ModelInfoDialog
|
||||
from QuantizationThread import QuantizationThread
|
||||
from TaskListItem import TaskListItem
|
||||
from error_handling import show_error, handle_error
|
||||
from imports_and_globals import ensure_directory, open_file_safe, resource_path
|
||||
from localizations import *
|
||||
from ui_update import *
|
||||
from src.GPUMonitor import GPUMonitor
|
||||
from src.KVOverrideEntry import KVOverrideEntry
|
||||
from src.Logger import Logger
|
||||
from src.ModelInfoDialog import ModelInfoDialog
|
||||
from src.imports_and_globals import (
|
||||
open_file_safe,
|
||||
resource_path,
|
||||
show_about,
|
||||
ensure_directory,
|
||||
)
|
||||
from src.localizations import *
|
||||
import src.ui_update
|
||||
import src.lora_conversion
|
||||
import src.utils
|
||||
|
||||
|
||||
class AutoGGUF(QMainWindow):
|
||||
|
@ -37,17 +37,35 @@ def __init__(self):
|
|||
ensure_directory(os.path.abspath("models"))
|
||||
|
||||
# References
|
||||
self.update_base_model_visibility = partial(update_base_model_visibility, self)
|
||||
self.update_assets = update_assets.__get__(self)
|
||||
self.update_cuda_option = update_cuda_option.__get__(self)
|
||||
self.update_cuda_backends = update_cuda_backends.__get__(self)
|
||||
self.update_threads_spinbox = partial(update_threads_spinbox, self)
|
||||
self.update_threads_slider = partial(update_threads_slider, self)
|
||||
self.update_gpu_offload_spinbox = partial(update_gpu_offload_spinbox, self)
|
||||
self.update_gpu_offload_slider = partial(update_gpu_offload_slider, self)
|
||||
self.update_model_info = partial(update_model_info, self.logger, self)
|
||||
self.update_system_info = partial(update_system_info, self)
|
||||
self.update_download_progress = partial(update_download_progress, self)
|
||||
self.update_base_model_visibility = partial(
|
||||
src.ui_update.update_base_model_visibility, self
|
||||
)
|
||||
self.update_assets = src.ui_update.update_assets.__get__(self)
|
||||
self.update_cuda_option = src.ui_update.update_cuda_option.__get__(self)
|
||||
self.update_cuda_backends = src.ui_update.update_cuda_backends.__get__(self)
|
||||
self.download_llama_cpp = src.utils.download_llama_cpp.__get__(self)
|
||||
self.refresh_releases = src.utils.refresh_releases.__get__(self)
|
||||
self.browse_lora_input = src.utils.browse_lora_input.__get__(self)
|
||||
self.browse_lora_output = src.utils.browse_lora_output.__get__(self)
|
||||
self.convert_lora = src.lora_conversion.convert_lora.__get__(self)
|
||||
self.show_about = show_about.__get__(self)
|
||||
self.update_threads_spinbox = partial(
|
||||
src.ui_update.update_threads_spinbox, self
|
||||
)
|
||||
self.update_threads_slider = partial(src.ui_update.update_threads_slider, self)
|
||||
self.update_gpu_offload_spinbox = partial(
|
||||
src.ui_update.update_gpu_offload_spinbox, self
|
||||
)
|
||||
self.update_gpu_offload_slider = partial(
|
||||
src.ui_update.update_gpu_offload_slider, self
|
||||
)
|
||||
self.update_model_info = partial(
|
||||
src.ui_update.update_model_info, self.logger, self
|
||||
)
|
||||
self.update_system_info = partial(src.ui_update.update_system_info, self)
|
||||
self.update_download_progress = partial(
|
||||
src.ui_update.update_download_progress, self
|
||||
)
|
||||
|
||||
# Create a central widget and main layout
|
||||
central_widget = QWidget()
|
||||
|
@ -711,14 +729,6 @@ def refresh_backends(self):
|
|||
self.backend_combo.setEnabled(False)
|
||||
self.logger.info(FOUND_VALID_BACKENDS.format(self.backend_combo.count()))
|
||||
|
||||
def show_about(self):
|
||||
about_text = (
|
||||
"AutoGGUF\n\n"
|
||||
f"Version: {AUTOGGUF_VERSION}\n\n"
|
||||
"A tool for managing and converting GGUF models."
|
||||
)
|
||||
QMessageBox.about(self, "About AutoGGUF", about_text)
|
||||
|
||||
def save_preset(self):
|
||||
self.logger.info(SAVING_PRESET)
|
||||
preset = {
|
||||
|
@ -1060,87 +1070,6 @@ def restart_task(self, task_item):
|
|||
task_item.update_status(IN_PROGRESS)
|
||||
break
|
||||
|
||||
def browse_lora_input(self):
|
||||
self.logger.info(BROWSING_FOR_LORA_INPUT_DIRECTORY)
|
||||
lora_input_path = QFileDialog.getExistingDirectory(
|
||||
self, SELECT_LORA_INPUT_DIRECTORY
|
||||
)
|
||||
if lora_input_path:
|
||||
self.lora_input.setText(os.path.abspath(lora_input_path))
|
||||
ensure_directory(lora_input_path)
|
||||
|
||||
def browse_lora_output(self):
|
||||
self.logger.info(BROWSING_FOR_LORA_OUTPUT_FILE)
|
||||
lora_output_file, _ = QFileDialog.getSaveFileName(
|
||||
self, SELECT_LORA_OUTPUT_FILE, "", GGUF_AND_BIN_FILES
|
||||
)
|
||||
if lora_output_file:
|
||||
self.lora_output.setText(os.path.abspath(lora_output_file))
|
||||
|
||||
def convert_lora(self):
|
||||
self.logger.info(STARTING_LORA_CONVERSION)
|
||||
try:
|
||||
lora_input_path = self.lora_input.text()
|
||||
lora_output_path = self.lora_output.text()
|
||||
lora_output_type = self.lora_output_type_combo.currentText()
|
||||
|
||||
if not lora_input_path:
|
||||
raise ValueError(LORA_INPUT_PATH_REQUIRED)
|
||||
if not lora_output_path:
|
||||
raise ValueError(LORA_OUTPUT_PATH_REQUIRED)
|
||||
|
||||
if lora_output_type == "GGUF": # Use new file and parameters for GGUF
|
||||
command = [
|
||||
"python",
|
||||
"src/convert_lora_to_gguf.py",
|
||||
"--outfile",
|
||||
lora_output_path,
|
||||
lora_input_path,
|
||||
]
|
||||
base_model_path = self.base_model_path.text()
|
||||
if not base_model_path:
|
||||
raise ValueError(BASE_MODEL_PATH_REQUIRED)
|
||||
command.extend(["--base", base_model_path])
|
||||
else: # Use old GGML parameters for GGML
|
||||
command = ["python", "src/convert_lora_to_ggml.py", lora_input_path]
|
||||
|
||||
logs_path = self.logs_input.text()
|
||||
ensure_directory(logs_path)
|
||||
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
log_file = os.path.join(logs_path, f"lora_conversion_{timestamp}.log")
|
||||
|
||||
command_str = " ".join(command)
|
||||
self.logger.info(f"{LORA_CONVERSION_COMMAND}: {command_str}")
|
||||
|
||||
thread = QuantizationThread(command, os.getcwd(), log_file)
|
||||
self.quant_threads.append(thread)
|
||||
|
||||
task_name = LORA_CONVERSION_FROM_TO.format(
|
||||
os.path.basename(lora_input_path), os.path.basename(lora_output_path)
|
||||
)
|
||||
task_item = TaskListItem(task_name, log_file, show_progress_bar=False)
|
||||
list_item = QListWidgetItem(self.task_list)
|
||||
list_item.setSizeHint(task_item.sizeHint())
|
||||
self.task_list.addItem(list_item)
|
||||
self.task_list.setItemWidget(list_item, task_item)
|
||||
|
||||
thread.status_signal.connect(task_item.update_status)
|
||||
thread.finished_signal.connect(
|
||||
lambda: self.lora_conversion_finished(
|
||||
thread, lora_input_path, lora_output_path
|
||||
)
|
||||
)
|
||||
thread.error_signal.connect(
|
||||
lambda err: handle_error(self.logger, err, task_item)
|
||||
)
|
||||
thread.start()
|
||||
self.logger.info(LORA_CONVERSION_TASK_STARTED)
|
||||
except ValueError as e:
|
||||
show_error(self.logger, str(e))
|
||||
except Exception as e:
|
||||
show_error(self.logger, ERROR_STARTING_LORA_CONVERSION.format(str(e)))
|
||||
|
||||
def lora_conversion_finished(self, thread, input_path, output_path):
|
||||
self.logger.info(LORA_CONVERSION_FINISHED)
|
||||
if thread in self.quant_threads:
|
||||
|
@ -1194,43 +1123,6 @@ def download_finished(self, extract_dir):
|
|||
if index >= 0:
|
||||
self.backend_combo.setCurrentIndex(index)
|
||||
|
||||
def refresh_releases(self):
|
||||
self.logger.info(REFRESHING_LLAMACPP_RELEASES)
|
||||
try:
|
||||
response = requests.get(
|
||||
"https://api.github.com/repos/ggerganov/llama.cpp/releases"
|
||||
)
|
||||
response.raise_for_status() # Raise an exception for bad status codes
|
||||
releases = response.json()
|
||||
self.release_combo.clear()
|
||||
for release in releases:
|
||||
self.release_combo.addItem(release["tag_name"], userData=release)
|
||||
self.release_combo.currentIndexChanged.connect(self.update_assets)
|
||||
self.update_assets()
|
||||
except requests.exceptions.RequestException as e:
|
||||
show_error(self.logger, ERROR_FETCHING_RELEASES.format(str(e)))
|
||||
|
||||
def download_llama_cpp(self):
|
||||
self.logger.info(STARTING_LLAMACPP_DOWNLOAD)
|
||||
asset = self.asset_combo.currentData()
|
||||
if not asset:
|
||||
show_error(self.logger, NO_ASSET_SELECTED)
|
||||
return
|
||||
|
||||
llama_bin = os.path.abspath("llama_bin")
|
||||
os.makedirs(llama_bin, exist_ok=True)
|
||||
|
||||
save_path = os.path.join(llama_bin, asset["name"])
|
||||
|
||||
self.download_thread = DownloadThread(asset["browser_download_url"], save_path)
|
||||
self.download_thread.progress_signal.connect(self.update_download_progress)
|
||||
self.download_thread.finished_signal.connect(self.download_finished)
|
||||
self.download_thread.error_signal.connect(self.download_error)
|
||||
self.download_thread.start()
|
||||
|
||||
self.download_button.setEnabled(False)
|
||||
self.download_progress.setValue(0)
|
||||
|
||||
def download_finished(self, extract_dir):
|
||||
self.download_button.setEnabled(True)
|
||||
self.download_progress.setValue(100)
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
QComboBox,
|
||||
)
|
||||
|
||||
from localizations import (
|
||||
from src.localizations import (
|
||||
GPU_USAGE_FORMAT,
|
||||
GPU_DETAILS,
|
||||
GPU_USAGE_OVER_TIME,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from PySide6.QtWidgets import QMessageBox
|
||||
from localizations import *
|
||||
from src.localizations import *
|
||||
|
||||
|
||||
def show_error(logger, message):
|
||||
|
|
|
@ -38,6 +38,17 @@
|
|||
from PySide6.QtCore import QTimer, Signal, QThread, Qt, QSize
|
||||
from PySide6.QtGui import QCloseEvent, QAction
|
||||
|
||||
from src.localizations import *
|
||||
|
||||
|
||||
def show_about(self):
|
||||
about_text = (
|
||||
"AutoGGUF\n\n"
|
||||
f"Version: {AUTOGGUF_VERSION}\n\n"
|
||||
"A tool for managing and converting GGUF models."
|
||||
)
|
||||
QMessageBox.about(self, "About AutoGGUF", about_text)
|
||||
|
||||
|
||||
def ensure_directory(path):
|
||||
if not os.path.exists(path):
|
||||
|
|
|
@ -877,7 +877,9 @@ def __init__(self):
|
|||
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "下载完成。已解压到:{0}"
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp二进制文件已下载并解压到{0}"
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = "未找到合适的CUDA后端进行提取"
|
||||
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = "llama.cpp二进制文件已下载并解压到{0}"
|
||||
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cpp二进制文件已下载并解压到{0}"
|
||||
)
|
||||
self.REFRESHING_LLAMACPP_RELEASES = "刷新llama.cpp版本"
|
||||
self.UPDATING_ASSET_LIST = "更新资源列表"
|
||||
self.UPDATING_CUDA_OPTIONS = "更新CUDA选项"
|
||||
|
@ -941,7 +943,9 @@ def __init__(self):
|
|||
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "对output.weight张量使用此类型"
|
||||
self.TOKEN_EMBEDDING_TYPE = "词元嵌入类型:"
|
||||
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = "对词元嵌入张量使用此类型"
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = "将生成与输入相同分片的量化模型"
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
|
||||
"将生成与输入相同分片的量化模型"
|
||||
)
|
||||
self.OVERRIDE_MODEL_METADATA = "覆盖模型元数据"
|
||||
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix生成的输入数据文件"
|
||||
self.MODEL_TO_BE_QUANTIZED = "要量化的模型"
|
||||
|
@ -988,7 +992,9 @@ def __init__(self):
|
|||
self.MODEL_DIRECTORY_REQUIRED = "需要模型目录"
|
||||
self.HF_TO_GGUF_CONVERSION_COMMAND = "HF到GGUF转换命令:{}"
|
||||
self.CONVERTING_TO_GGUF = "将{}转换为GGUF"
|
||||
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = "启动HuggingFace到GGUF转换时出错:{}"
|
||||
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
|
||||
"启动HuggingFace到GGUF转换时出错:{}"
|
||||
)
|
||||
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = "HuggingFace到GGUF转换任务已开始"
|
||||
|
||||
|
||||
|
@ -1436,7 +1442,9 @@ def __init__(self):
|
|||
self.NO_MODEL_SELECTED = "कोई मॉडल चयनित नहीं"
|
||||
self.REFRESH_RELEASES = "रिलीज़ रीफ्रेश करें"
|
||||
self.NO_SUITABLE_CUDA_BACKENDS = "कोई उपयुक्त CUDA बैकएंड नहीं मिला"
|
||||
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई\nCUDA फ़ाइलें {1} में निकाली गईं"
|
||||
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
|
||||
"llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई\nCUDA फ़ाइलें {1} में निकाली गईं"
|
||||
)
|
||||
self.CUDA_FILES_EXTRACTED = "CUDA फ़ाइलें निकाली गईं"
|
||||
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
|
||||
"निष्कर्षण के लिए कोई उपयुक्त CUDA बैकएंड नहीं मिला"
|
||||
|
@ -1465,7 +1473,9 @@ def __init__(self):
|
|||
self.RESTARTING_TASK = "कार्य पुनः आरंभ हो रहा है: {0}"
|
||||
self.IN_PROGRESS = "प्रगति में"
|
||||
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "डाउनलोड समाप्त। निकाला गया: {0}"
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई\nCUDA फ़ाइलें {1} में निकाली गईं"
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई\nCUDA फ़ाइलें {1} में निकाली गईं"
|
||||
)
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
|
||||
"निष्कर्षण के लिए कोई उपयुक्त CUDA बैकएंड नहीं मिला"
|
||||
)
|
||||
|
@ -1487,25 +1497,17 @@ def __init__(self):
|
|||
self.DELETING_TASK = "कार्य हटाया जा रहा है: {0}"
|
||||
self.LOADING_MODELS = "मॉडल लोड हो रहे हैं"
|
||||
self.LOADED_MODELS = "{0} मॉडल लोड किए गए"
|
||||
self.BROWSING_FOR_MODELS_DIRECTORY = (
|
||||
"मॉडल निर्देशिका के लिए ब्राउज़ किया जा रहा है"
|
||||
)
|
||||
self.BROWSING_FOR_MODELS_DIRECTORY = "मॉडल निर्देशिका के लिए ब्राउज़ किया जा रहा है"
|
||||
self.SELECT_MODELS_DIRECTORY = "मॉडल निर्देशिका चुनें"
|
||||
self.BROWSING_FOR_OUTPUT_DIRECTORY = (
|
||||
"आउटपुट निर्देशिका के लिए ब्राउज़ किया जा रहा है"
|
||||
)
|
||||
self.BROWSING_FOR_OUTPUT_DIRECTORY = "आउटपुट निर्देशिका के लिए ब्राउज़ किया जा रहा है"
|
||||
self.SELECT_OUTPUT_DIRECTORY = "आउटपुट निर्देशिका चुनें"
|
||||
self.BROWSING_FOR_LOGS_DIRECTORY = (
|
||||
"लॉग निर्देशिका के लिए ब्राउज़ किया जा रहा है"
|
||||
)
|
||||
self.BROWSING_FOR_LOGS_DIRECTORY = "लॉग निर्देशिका के लिए ब्राउज़ किया जा रहा है"
|
||||
self.SELECT_LOGS_DIRECTORY = "लॉग निर्देशिका चुनें"
|
||||
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix फ़ाइल के लिए ब्राउज़ किया जा रहा है"
|
||||
self.SELECT_IMATRIX_FILE = "IMatrix फ़ाइल चुनें"
|
||||
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
|
||||
self.CPU_USAGE_FORMAT = "CPU उपयोग: {0:.1f}%"
|
||||
self.VALIDATING_QUANTIZATION_INPUTS = (
|
||||
"क्वांटाइजेशन इनपुट सत्यापित किए जा रहे हैं"
|
||||
)
|
||||
self.VALIDATING_QUANTIZATION_INPUTS = "क्वांटाइजेशन इनपुट सत्यापित किए जा रहे हैं"
|
||||
self.MODELS_PATH_REQUIRED = "मॉडल पथ आवश्यक है"
|
||||
self.OUTPUT_PATH_REQUIRED = "आउटपुट पथ आवश्यक है"
|
||||
self.LOGS_PATH_REQUIRED = "लॉग पथ आवश्यक है"
|
||||
|
@ -1532,9 +1534,7 @@ def __init__(self):
|
|||
self.STARTING_IMATRIX_GENERATION = "IMatrix उत्पादन शुरू हो रहा है"
|
||||
self.BACKEND_PATH_NOT_EXIST = "बैकएंड पथ मौजूद नहीं है: {0}"
|
||||
self.GENERATING_IMATRIX = "IMatrix उत्पन्न किया जा रहा है"
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = (
|
||||
"IMatrix उत्पादन शुरू करने में त्रुटि: {0}"
|
||||
)
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = "IMatrix उत्पादन शुरू करने में त्रुटि: {0}"
|
||||
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix उत्पादन कार्य शुरू हुआ"
|
||||
self.ERROR_MESSAGE = "त्रुटि: {0}"
|
||||
self.TASK_ERROR = "कार्य त्रुटि: {0}"
|
||||
|
@ -1544,14 +1544,14 @@ def __init__(self):
|
|||
self.ALLOWS_REQUANTIZING = (
|
||||
"पहले से क्वांटाइज़ किए गए टेंसर को पुनः क्वांटाइज़ करने की अनुमति देता है"
|
||||
)
|
||||
self.LEAVE_OUTPUT_WEIGHT = (
|
||||
"output.weight को अक्वांटाइज़ (या पुनः क्वांटाइज़) छोड़ देगा"
|
||||
self.LEAVE_OUTPUT_WEIGHT = "output.weight को अक्वांटाइज़ (या पुनः क्वांटाइज़) छोड़ देगा"
|
||||
self.DISABLE_K_QUANT_MIXTURES = (
|
||||
"k-quant मिश्रण को अक्षम करें और सभी टेंसर को एक ही प्रकार में क्वांटाइज़ करें"
|
||||
)
|
||||
self.DISABLE_K_QUANT_MIXTURES = "k-quant मिश्रण को अक्षम करें और सभी टेंसर को एक ही प्रकार में क्वांटाइज़ करें"
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = "क्वांट अनुकूलन के लिए फ़ाइल में डेटा को महत्व मैट्रिक्स के रूप में उपयोग करें"
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"इन टेंसर के लिए महत्व मैट्रिक्स का उपयोग करें"
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
|
||||
"क्वांट अनुकूलन के लिए फ़ाइल में डेटा को महत्व मैट्रिक्स के रूप में उपयोग करें"
|
||||
)
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "इन टेंसर के लिए महत्व मैट्रिक्स का उपयोग करें"
|
||||
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"इन टेंसर के लिए महत्व मैट्रिक्स का उपयोग न करें"
|
||||
)
|
||||
|
@ -2008,7 +2008,9 @@ def __init__(self):
|
|||
self.RESTART = "再起動"
|
||||
self.DELETE = "削除"
|
||||
self.CONFIRM_DELETION = "このタスクを削除してもよろしいですか?"
|
||||
self.TASK_RUNNING_WARNING = "一部のタスクはまだ実行中です。終了してもよろしいですか?"
|
||||
self.TASK_RUNNING_WARNING = (
|
||||
"一部のタスクはまだ実行中です。終了してもよろしいですか?"
|
||||
)
|
||||
self.YES = "はい"
|
||||
self.NO = "いいえ"
|
||||
self.DOWNLOAD_COMPLETE = "ダウンロード完了"
|
||||
|
@ -2021,11 +2023,11 @@ def __init__(self):
|
|||
self.NO_MODEL_SELECTED = "モデルが選択されていません"
|
||||
self.REFRESH_RELEASES = "リリースを更新"
|
||||
self.NO_SUITABLE_CUDA_BACKENDS = "適切なCUDAバックエンドが見つかりませんでした"
|
||||
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
|
||||
"llama.cppバイナリがダウンロードされ、{0}に抽出されました\nCUDAファイルは{1}に抽出されました"
|
||||
)
|
||||
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cppバイナリがダウンロードされ、{0}に抽出されました\nCUDAファイルは{1}に抽出されました"
|
||||
self.CUDA_FILES_EXTRACTED = "CUDAファイルはに抽出されました"
|
||||
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = "抽出に適したCUDAバックエンドが見つかりませんでした"
|
||||
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
|
||||
"抽出に適したCUDAバックエンドが見つかりませんでした"
|
||||
)
|
||||
self.ERROR_FETCHING_RELEASES = "リリースの取得中にエラーが発生しました: {0}"
|
||||
self.CONFIRM_DELETION_TITLE = "削除の確認"
|
||||
self.LOG_FOR = "{0}のログ"
|
||||
|
@ -2050,10 +2052,10 @@ def __init__(self):
|
|||
self.RESTARTING_TASK = "タスクを再起動しています: {0}"
|
||||
self.IN_PROGRESS = "処理中"
|
||||
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "ダウンロードが完了しました。抽出先: {0}"
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cppバイナリがダウンロードされ、{0}に抽出されました\nCUDAファイルは{1}に抽出されました"
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cppバイナリがダウンロードされ、{0}に抽出されました\nCUDAファイルは{1}に抽出されました"
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
|
||||
"抽出に適したCUDAバックエンドが見つかりませんでした"
|
||||
)
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = "抽出に適したCUDAバックエンドが見つかりませんでした"
|
||||
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cppバイナリがダウンロードされ、{0}に抽出されました"
|
||||
)
|
||||
|
@ -2103,24 +2105,42 @@ def __init__(self):
|
|||
self.STARTING_IMATRIX_GENERATION = "IMatrixの生成を開始しています"
|
||||
self.BACKEND_PATH_NOT_EXIST = "バックエンドパスが存在しません: {0}"
|
||||
self.GENERATING_IMATRIX = "IMatrixを生成しています"
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = "IMatrixの生成を開始中にエラーが発生しました: {0}"
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = (
|
||||
"IMatrixの生成を開始中にエラーが発生しました: {0}"
|
||||
)
|
||||
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix生成タスクが開始されました"
|
||||
self.ERROR_MESSAGE = "エラー: {0}"
|
||||
self.TASK_ERROR = "タスクエラー: {0}"
|
||||
self.APPLICATION_CLOSING = "アプリケーションを終了しています"
|
||||
self.APPLICATION_CLOSED = "アプリケーションが終了しました"
|
||||
self.SELECT_QUANTIZATION_TYPE = "量子化タイプを選択してください"
|
||||
self.ALLOWS_REQUANTIZING = "すでに量子化されているテンソルの再量子化を許可します"
|
||||
self.ALLOWS_REQUANTIZING = (
|
||||
"すでに量子化されているテンソルの再量子化を許可します"
|
||||
)
|
||||
self.LEAVE_OUTPUT_WEIGHT = "output.weightは(再)量子化されません"
|
||||
self.DISABLE_K_QUANT_MIXTURES = "k-quant混合を無効にし、すべてのテンソルを同じタイプに量子化します"
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = "量子化最適化の重要度マトリックスとしてファイル内のデータを使用します"
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "これらのテンソルに重要度マトリックスを使用します"
|
||||
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = "これらのテンソルに重要度マトリックスを使用しません"
|
||||
self.DISABLE_K_QUANT_MIXTURES = (
|
||||
"k-quant混合を無効にし、すべてのテンソルを同じタイプに量子化します"
|
||||
)
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
|
||||
"量子化最適化の重要度マトリックスとしてファイル内のデータを使用します"
|
||||
)
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"これらのテンソルに重要度マトリックスを使用します"
|
||||
)
|
||||
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"これらのテンソルに重要度マトリックスを使用しません"
|
||||
)
|
||||
self.OUTPUT_TENSOR_TYPE = "出力テンソルタイプ:"
|
||||
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "output.weightテンソルにこのタイプを使用します"
|
||||
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
|
||||
"output.weightテンソルにこのタイプを使用します"
|
||||
)
|
||||
self.TOKEN_EMBEDDING_TYPE = "トークン埋め込みタイプ:"
|
||||
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = "トークン埋め込みテンソルにこのタイプを使用します"
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = "入力と同じシャードで量子化されたモデルを生成します"
|
||||
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
|
||||
"トークン埋め込みテンソルにこのタイプを使用します"
|
||||
)
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
|
||||
"入力と同じシャードで量子化されたモデルを生成します"
|
||||
)
|
||||
self.OVERRIDE_MODEL_METADATA = "モデルメタデータを上書きする"
|
||||
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix生成用の入力データファイル"
|
||||
self.MODEL_TO_BE_QUANTIZED = "量子化されるモデル"
|
||||
|
@ -2777,11 +2797,11 @@ def __init__(self):
|
|||
self.NO_MODEL_SELECTED = "모델이 선택되지 않았습니다"
|
||||
self.REFRESH_RELEASES = "릴리스 새로 고침"
|
||||
self.NO_SUITABLE_CUDA_BACKENDS = "적합한 CUDA 백엔드를 찾을 수 없습니다"
|
||||
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
|
||||
"llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다.\nCUDA 파일이 {1}에 추출되었습니다."
|
||||
)
|
||||
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다.\nCUDA 파일이 {1}에 추출되었습니다."
|
||||
self.CUDA_FILES_EXTRACTED = "CUDA 파일이 에 추출되었습니다."
|
||||
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = "추출에 적합한 CUDA 백엔드를 찾을 수 없습니다."
|
||||
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
|
||||
"추출에 적합한 CUDA 백엔드를 찾을 수 없습니다."
|
||||
)
|
||||
self.ERROR_FETCHING_RELEASES = "릴리스를 가져오는 중 오류가 발생했습니다: {0}"
|
||||
self.CONFIRM_DELETION_TITLE = "삭제 확인"
|
||||
self.LOG_FOR = "{0}에 대한 로그"
|
||||
|
@ -2805,11 +2825,13 @@ def __init__(self):
|
|||
self.TASK_PRESET_SAVED_TO = "작업 프리셋이 {0}에 저장되었습니다."
|
||||
self.RESTARTING_TASK = "작업을 다시 시작하는 중입니다: {0}"
|
||||
self.IN_PROGRESS = "진행 중"
|
||||
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "다운로드가 완료되었습니다. 추출 위치: {0}"
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다.\nCUDA 파일이 {1}에 추출되었습니다."
|
||||
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
|
||||
"다운로드가 완료되었습니다. 추출 위치: {0}"
|
||||
)
|
||||
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다.\nCUDA 파일이 {1}에 추출되었습니다."
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
|
||||
"추출에 적합한 CUDA 백엔드를 찾을 수 없습니다."
|
||||
)
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = "추출에 적합한 CUDA 백엔드를 찾을 수 없습니다."
|
||||
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다."
|
||||
)
|
||||
|
@ -2846,10 +2868,14 @@ def __init__(self):
|
|||
self.INPUT_FILE_NOT_EXIST = "입력 파일 '{0}'이 존재하지 않습니다."
|
||||
self.QUANTIZING_MODEL_TO = "{0}을 {1}(으)로 양자화하는 중입니다."
|
||||
self.QUANTIZATION_TASK_STARTED = "{0}에 대한 양자화 작업이 시작되었습니다."
|
||||
self.ERROR_STARTING_QUANTIZATION = "양자화를 시작하는 중 오류가 발생했습니다: {0}"
|
||||
self.ERROR_STARTING_QUANTIZATION = (
|
||||
"양자화를 시작하는 중 오류가 발생했습니다: {0}"
|
||||
)
|
||||
self.UPDATING_MODEL_INFO = "모델 정보를 업데이트하는 중입니다: {0}"
|
||||
self.TASK_FINISHED = "작업이 완료되었습니다: {0}"
|
||||
self.SHOWING_TASK_DETAILS_FOR = "다음에 대한 작업 세부 정보를 표시하는 중입니다: {0}"
|
||||
self.SHOWING_TASK_DETAILS_FOR = (
|
||||
"다음에 대한 작업 세부 정보를 표시하는 중입니다: {0}"
|
||||
)
|
||||
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrix 데이터 파일을 찾아보는 중입니다."
|
||||
self.SELECT_DATA_FILE = "데이터 파일 선택"
|
||||
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrix 모델 파일을 찾아보는 중입니다."
|
||||
|
@ -2859,7 +2885,9 @@ def __init__(self):
|
|||
self.STARTING_IMATRIX_GENERATION = "IMatrix 생성을 시작하는 중입니다."
|
||||
self.BACKEND_PATH_NOT_EXIST = "백엔드 경로가 존재하지 않습니다: {0}"
|
||||
self.GENERATING_IMATRIX = "IMatrix를 생성하는 중입니다."
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = "IMatrix 생성을 시작하는 중 오류가 발생했습니다: {0}"
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = (
|
||||
"IMatrix 생성을 시작하는 중 오류가 발생했습니다: {0}"
|
||||
)
|
||||
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix 생성 작업이 시작되었습니다."
|
||||
self.ERROR_MESSAGE = "오류: {0}"
|
||||
self.TASK_ERROR = "작업 오류: {0}"
|
||||
|
@ -2868,14 +2896,26 @@ def __init__(self):
|
|||
self.SELECT_QUANTIZATION_TYPE = "양자화 유형을 선택하세요."
|
||||
self.ALLOWS_REQUANTIZING = "이미 양자화된 텐서의 재양자화를 허용합니다."
|
||||
self.LEAVE_OUTPUT_WEIGHT = "output.weight를 (재)양자화하지 않은 상태로 둡니다."
|
||||
self.DISABLE_K_QUANT_MIXTURES = "k-양자 혼합을 비활성화하고 모든 텐서를 동일한 유형으로 양자화합니다."
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = "양자 최적화를 위한 중요도 행렬로 파일의 데이터를 사용합니다."
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "이러한 텐서에 중요도 행렬을 사용합니다."
|
||||
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = "이러한 텐서에 중요도 행렬을 사용하지 않습니다."
|
||||
self.DISABLE_K_QUANT_MIXTURES = (
|
||||
"k-양자 혼합을 비활성화하고 모든 텐서를 동일한 유형으로 양자화합니다."
|
||||
)
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
|
||||
"양자 최적화를 위한 중요도 행렬로 파일의 데이터를 사용합니다."
|
||||
)
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"이러한 텐서에 중요도 행렬을 사용합니다."
|
||||
)
|
||||
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"이러한 텐서에 중요도 행렬을 사용하지 않습니다."
|
||||
)
|
||||
self.OUTPUT_TENSOR_TYPE = "출력 텐서 유형:"
|
||||
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "output.weight 텐서에 이 유형을 사용합니다."
|
||||
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
|
||||
"output.weight 텐서에 이 유형을 사용합니다."
|
||||
)
|
||||
self.TOKEN_EMBEDDING_TYPE = "토큰 임베딩 유형:"
|
||||
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = "토큰 임베딩 텐서에 이 유형을 사용합니다."
|
||||
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
|
||||
"토큰 임베딩 텐서에 이 유형을 사용합니다."
|
||||
)
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
|
||||
"입력과 동일한 샤드에 양자화된 모델을 생성합니다."
|
||||
)
|
||||
|
@ -3830,9 +3870,7 @@ def __init__(self):
|
|||
self.STARTING_IMATRIX_GENERATION = "IMatrix জেনারেশন শুরু হচ্ছে"
|
||||
self.BACKEND_PATH_NOT_EXIST = "ব্যাকএন্ড পাথ বিদ্যমান নেই: {0}"
|
||||
self.GENERATING_IMATRIX = "IMatrix তৈরি করা হচ্ছে"
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = (
|
||||
"IMatrix জেনারেশন শুরু করতে ত্রুটি: {0}"
|
||||
)
|
||||
self.ERROR_STARTING_IMATRIX_GENERATION = "IMatrix জেনারেশন শুরু করতে ত্রুটি: {0}"
|
||||
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix জেনারেশন টাস্ক শুরু হয়েছে"
|
||||
self.ERROR_MESSAGE = "ত্রুটি: {0}"
|
||||
self.TASK_ERROR = "টাস্ক ত্রুটি: {0}"
|
||||
|
@ -3840,11 +3878,13 @@ def __init__(self):
|
|||
self.APPLICATION_CLOSED = "অ্যাপ্লিকেশন বন্ধ"
|
||||
self.SELECT_QUANTIZATION_TYPE = "কোয়ান্টাইজেশন ধরণ নির্বাচন করুন"
|
||||
self.ALLOWS_REQUANTIZING = "যে টেন্সরগুলি ইতিমধ্যে কোয়ান্টাইজ করা হয়েছে তাদের পুনরায় কোয়ান্টাইজ করার অনুমতি দেয়"
|
||||
self.LEAVE_OUTPUT_WEIGHT = (
|
||||
"output.weight কে (পুনরায়) কোয়ান্টাইজ না করে রেখে দেবে"
|
||||
self.LEAVE_OUTPUT_WEIGHT = "output.weight কে (পুনরায়) কোয়ান্টাইজ না করে রেখে দেবে"
|
||||
self.DISABLE_K_QUANT_MIXTURES = (
|
||||
"k-কোয়ান্ট মিশ্রণগুলি অক্ষম করুন এবং সমস্ত টেন্সরকে একই ধরণের কোয়ান্টাইজ করুন"
|
||||
)
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
|
||||
"কোয়ান্ট অপ্টিমাইজেশনের জন্য ফাইলের ডেটা গুরুত্বপূর্ণ ম্যাট্রিক্স হিসাবে ব্যবহার করুন"
|
||||
)
|
||||
self.DISABLE_K_QUANT_MIXTURES = "k-কোয়ান্ট মিশ্রণগুলি অক্ষম করুন এবং সমস্ত টেন্সরকে একই ধরণের কোয়ান্টাইজ করুন"
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = "কোয়ান্ট অপ্টিমাইজেশনের জন্য ফাইলের ডেটা গুরুত্বপূর্ণ ম্যাট্রিক্স হিসাবে ব্যবহার করুন"
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
|
||||
"এই টেন্সরগুলির জন্য গুরুত্বপূর্ণ ম্যাট্রিক্স ব্যবহার করুন"
|
||||
)
|
||||
|
@ -5948,7 +5988,9 @@ def __init__(self):
|
|||
"llama.cpp 二進位檔案已下載並解壓縮至 {0}\nCUDA 檔案已解壓縮至 {1}"
|
||||
)
|
||||
self.NO_SUITABLE_CUDA_BACKEND_FOUND = "找不到合適的 CUDA 後端進行解壓縮"
|
||||
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = "llama.cpp 二進位檔案已下載並解壓縮至 {0}"
|
||||
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
|
||||
"llama.cpp 二進位檔案已下載並解壓縮至 {0}"
|
||||
)
|
||||
self.REFRESHING_LLAMACPP_RELEASES = "正在重新整理 llama.cpp 版本"
|
||||
self.UPDATING_ASSET_LIST = "正在更新資源清單"
|
||||
self.UPDATING_CUDA_OPTIONS = "正在更新 CUDA 選項"
|
||||
|
@ -6005,14 +6047,18 @@ def __init__(self):
|
|||
self.ALLOWS_REQUANTIZING = "允許重新量化已量化的張量"
|
||||
self.LEAVE_OUTPUT_WEIGHT = "將保留 output.weight 不被(重新)量化"
|
||||
self.DISABLE_K_QUANT_MIXTURES = "停用 k-quant 混合並將所有張量量化為相同類型"
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = "使用檔案中的資料作為量化最佳化的重要性矩陣"
|
||||
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
|
||||
"使用檔案中的資料作為量化最佳化的重要性矩陣"
|
||||
)
|
||||
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "對這些張量使用重要性矩陣"
|
||||
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = "不要對這些張量使用重要性矩陣"
|
||||
self.OUTPUT_TENSOR_TYPE = "輸出張量類型:"
|
||||
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "對 output.weight 張量使用此類型"
|
||||
self.TOKEN_EMBEDDING_TYPE = "權杖嵌入類型:"
|
||||
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = "對權杖嵌入張量使用此類型"
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = "將在與輸入相同的分片中產生量化模型"
|
||||
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
|
||||
"將在與輸入相同的分片中產生量化模型"
|
||||
)
|
||||
self.OVERRIDE_MODEL_METADATA = "覆蓋模型中繼資料"
|
||||
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix 產生的輸入資料檔案"
|
||||
self.MODEL_TO_BE_QUANTIZED = "要量化的模型"
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
from datetime import datetime
|
||||
|
||||
from PySide6.QtWidgets import QListWidgetItem
|
||||
|
||||
from src.QuantizationThread import QuantizationThread
|
||||
from src.TaskListItem import TaskListItem
|
||||
from src.error_handling import handle_error, show_error
|
||||
from src.imports_and_globals import ensure_directory
|
||||
from src.localizations import *
|
||||
|
||||
|
||||
def convert_lora(self):
|
||||
self.logger.info(STARTING_LORA_CONVERSION)
|
||||
try:
|
||||
lora_input_path = self.lora_input.text()
|
||||
lora_output_path = self.lora_output.text()
|
||||
lora_output_type = self.lora_output_type_combo.currentText()
|
||||
|
||||
if not lora_input_path:
|
||||
raise ValueError(LORA_INPUT_PATH_REQUIRED)
|
||||
if not lora_output_path:
|
||||
raise ValueError(LORA_OUTPUT_PATH_REQUIRED)
|
||||
|
||||
if lora_output_type == "GGUF": # Use new file and parameters for GGUF
|
||||
command = [
|
||||
"python",
|
||||
"src/convert_lora_to_gguf.py",
|
||||
"--outfile",
|
||||
lora_output_path,
|
||||
lora_input_path,
|
||||
]
|
||||
base_model_path = self.base_model_path.text()
|
||||
if not base_model_path:
|
||||
raise ValueError(BASE_MODEL_PATH_REQUIRED)
|
||||
command.extend(["--base", base_model_path])
|
||||
else: # Use old GGML parameters for GGML
|
||||
command = ["python", "src/convert_lora_to_ggml.py", lora_input_path]
|
||||
|
||||
logs_path = self.logs_input.text()
|
||||
ensure_directory(logs_path)
|
||||
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
log_file = os.path.join(logs_path, f"lora_conversion_{timestamp}.log")
|
||||
|
||||
command_str = " ".join(command)
|
||||
self.logger.info(f"{LORA_CONVERSION_COMMAND}: {command_str}")
|
||||
|
||||
thread = QuantizationThread(command, os.getcwd(), log_file)
|
||||
self.quant_threads.append(thread)
|
||||
|
||||
task_name = LORA_CONVERSION_FROM_TO.format(
|
||||
os.path.basename(lora_input_path), os.path.basename(lora_output_path)
|
||||
)
|
||||
task_item = TaskListItem(task_name, log_file, show_progress_bar=False)
|
||||
list_item = QListWidgetItem(self.task_list)
|
||||
list_item.setSizeHint(task_item.sizeHint())
|
||||
self.task_list.addItem(list_item)
|
||||
self.task_list.setItemWidget(list_item, task_item)
|
||||
|
||||
thread.status_signal.connect(task_item.update_status)
|
||||
thread.finished_signal.connect(
|
||||
lambda: self.lora_conversion_finished(
|
||||
thread, lora_input_path, lora_output_path
|
||||
)
|
||||
)
|
||||
thread.error_signal.connect(
|
||||
lambda err: handle_error(self.logger, err, task_item)
|
||||
)
|
||||
thread.start()
|
||||
self.logger.info(LORA_CONVERSION_TASK_STARTED)
|
||||
except ValueError as e:
|
||||
show_error(self.logger, str(e))
|
||||
except Exception as e:
|
||||
show_error(self.logger, ERROR_STARTING_LORA_CONVERSION.format(str(e)))
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
from PySide6.QtCore import QTimer
|
||||
from PySide6.QtWidgets import QApplication
|
||||
from AutoGGUF import AutoGGUF
|
||||
from src.AutoGGUF import AutoGGUF
|
||||
from flask import Flask, jsonify
|
||||
|
||||
server = Flask(__name__)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from localizations import *
|
||||
from src.localizations import *
|
||||
import psutil
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
from PySide6.QtWidgets import QFileDialog
|
||||
|
||||
from error_handling import show_error
|
||||
from localizations import *
|
||||
import requests
|
||||
|
||||
from src.DownloadThread import DownloadThread
|
||||
from src.imports_and_globals import ensure_directory
|
||||
|
||||
|
||||
def browse_lora_input(self):
|
||||
self.logger.info(BROWSING_FOR_LORA_INPUT_DIRECTORY)
|
||||
lora_input_path = QFileDialog.getExistingDirectory(
|
||||
self, SELECT_LORA_INPUT_DIRECTORY
|
||||
)
|
||||
if lora_input_path:
|
||||
self.lora_input.setText(os.path.abspath(lora_input_path))
|
||||
ensure_directory(lora_input_path)
|
||||
|
||||
|
||||
def browse_lora_output(self):
|
||||
self.logger.info(BROWSING_FOR_LORA_OUTPUT_FILE)
|
||||
lora_output_file, _ = QFileDialog.getSaveFileName(
|
||||
self, SELECT_LORA_OUTPUT_FILE, "", GGUF_AND_BIN_FILES
|
||||
)
|
||||
if lora_output_file:
|
||||
self.lora_output.setText(os.path.abspath(lora_output_file))
|
||||
|
||||
|
||||
def download_llama_cpp(self):
|
||||
self.logger.info(STARTING_LLAMACPP_DOWNLOAD)
|
||||
asset = self.asset_combo.currentData()
|
||||
if not asset:
|
||||
show_error(self.logger, NO_ASSET_SELECTED)
|
||||
return
|
||||
|
||||
llama_bin = os.path.abspath("llama_bin")
|
||||
os.makedirs(llama_bin, exist_ok=True)
|
||||
|
||||
save_path = os.path.join(llama_bin, asset["name"])
|
||||
|
||||
self.download_thread = DownloadThread(asset["browser_download_url"], save_path)
|
||||
self.download_thread.progress_signal.connect(self.update_download_progress)
|
||||
self.download_thread.finished_signal.connect(self.download_finished)
|
||||
self.download_thread.error_signal.connect(self.download_error)
|
||||
self.download_thread.start()
|
||||
|
||||
self.download_button.setEnabled(False)
|
||||
self.download_progress.setValue(0)
|
||||
|
||||
|
||||
def refresh_releases(self):
|
||||
self.logger.info(REFRESHING_LLAMACPP_RELEASES)
|
||||
try:
|
||||
response = requests.get(
|
||||
"https://api.github.com/repos/ggerganov/llama.cpp/releases"
|
||||
)
|
||||
response.raise_for_status() # Raise an exception for bad status codes
|
||||
releases = response.json()
|
||||
self.release_combo.clear()
|
||||
for release in releases:
|
||||
self.release_combo.addItem(release["tag_name"], userData=release)
|
||||
self.release_combo.currentIndexChanged.connect(self.update_assets)
|
||||
self.update_assets()
|
||||
except requests.exceptions.RequestException as e:
|
||||
show_error(self.logger, ERROR_FETCHING_RELEASES.format(str(e)))
|
Loading…
Reference in New Issue