mirror of https://github.com/leafspark/AutoGGUF
chore: update llama.cpp convert scripts
This commit is contained in:
parent
fb9addb8c0
commit
a59b49fd97
|
@ -11,3 +11,4 @@ python-dotenv~=1.0.1
|
|||
safetensors~=0.4.4
|
||||
setuptools~=68.2.0
|
||||
huggingface-hub~=0.24.6
|
||||
transformers~=4.44.2
|
||||
|
|
|
@ -69,6 +69,7 @@ class Model:
|
|||
model_name: str | None
|
||||
metadata_override: Path | None
|
||||
dir_model_card: Path
|
||||
is_lora: bool
|
||||
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
|
||||
|
@ -86,6 +87,7 @@ def __init__(
|
|||
split_max_size: int = 0,
|
||||
dry_run: bool = False,
|
||||
small_first_shard: bool = False,
|
||||
is_lora: bool = False,
|
||||
):
|
||||
if type(self) is Model:
|
||||
raise TypeError(
|
||||
|
@ -118,6 +120,7 @@ def __init__(
|
|||
self.metadata_override = metadata_override
|
||||
self.model_name = model_name
|
||||
self.dir_model_card = dir_model
|
||||
self.is_lora = is_lora
|
||||
|
||||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||||
|
||||
|
@ -381,6 +384,7 @@ def prepare_tensors(self):
|
|||
gguf.MODEL_TENSOR.FFN_GATE_INP,
|
||||
gguf.MODEL_TENSOR.POS_EMBD,
|
||||
gguf.MODEL_TENSOR.TOKEN_TYPES,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
)
|
||||
)
|
||||
or not name.endswith(".weight")
|
||||
|
@ -1831,7 +1835,10 @@ def prepare_tensors(self):
|
|||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", "").lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
dim = self.hparams.get(
|
||||
"head_dim",
|
||||
self.hparams["hidden_size"] // self.hparams["num_attention_heads"],
|
||||
)
|
||||
freqs = 1.0 / (
|
||||
base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)
|
||||
)
|
||||
|
@ -1860,6 +1867,7 @@ def prepare_tensors(self):
|
|||
)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(
|
||||
self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS),
|
||||
np.array(rope_factors, dtype=np.float32),
|
||||
|
@ -2472,6 +2480,7 @@ def set_gguf_parameters(self):
|
|||
f"The length of rope long and short factors must be {rope_dims / 2}"
|
||||
)
|
||||
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(
|
||||
gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight",
|
||||
np.array(long_factors, dtype=np.float32),
|
||||
|
@ -3081,7 +3090,7 @@ class StarCoder2Model(Model):
|
|||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
|
||||
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||||
class MambaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||||
|
||||
|
@ -3117,6 +3126,10 @@ def set_gguf_parameters(self):
|
|||
self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True)
|
||||
or 1e-5
|
||||
)
|
||||
use_dt_b_c_norm = False
|
||||
|
||||
if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
|
||||
use_dt_b_c_norm = True
|
||||
|
||||
assert d_inner == 2 * d_model
|
||||
|
||||
|
@ -3124,12 +3137,13 @@ def set_gguf_parameters(self):
|
|||
self.gguf_writer.add_embedding_length(d_model)
|
||||
self.gguf_writer.add_feed_forward_length(0)
|
||||
self.gguf_writer.add_head_count(0)
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||||
self.gguf_writer.add_ssm_state_size(d_state)
|
||||
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
_tok_embd = None
|
||||
|
@ -3159,25 +3173,6 @@ def modify_tensors(
|
|||
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
def tensor_force_quant(
|
||||
self, name: str, new_name: str, bid: int | None, n_dims: int
|
||||
) -> gguf.GGMLQuantizationType | bool:
|
||||
if bid is not None and new_name in (
|
||||
self.format_tensor_name(
|
||||
n, bid, ".weight" if name.endswith(".weight") else ""
|
||||
)
|
||||
for n in [
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
gguf.MODEL_TENSOR.SSM_X,
|
||||
gguf.MODEL_TENSOR.SSM_DT,
|
||||
gguf.MODEL_TENSOR.SSM_A,
|
||||
gguf.MODEL_TENSOR.SSM_D,
|
||||
]
|
||||
):
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
|
||||
@Model.register("CohereForCausalLM")
|
||||
class CommandR2Model(Model):
|
||||
|
@ -4301,7 +4296,10 @@ def prepare_tensors(self):
|
|||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", "").lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
dim = self.hparams.get(
|
||||
"head_dim",
|
||||
self.hparams["hidden_size"] // self.hparams["num_attention_heads"],
|
||||
)
|
||||
freqs = 1.0 / (
|
||||
base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)
|
||||
)
|
||||
|
@ -4330,6 +4328,7 @@ def prepare_tensors(self):
|
|||
)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(
|
||||
self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS),
|
||||
np.array(rope_factors, dtype=np.float32),
|
||||
|
@ -4403,82 +4402,26 @@ def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="")
|
||||
parser.add_argument(
|
||||
"--vocab-only",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile",
|
||||
type=Path,
|
||||
help="",
|
||||
)
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--vocab-only", action="store_true")
|
||||
parser.add_argument("--outfile", type=Path)
|
||||
parser.add_argument(
|
||||
"--outtype",
|
||||
type=str,
|
||||
choices=["f32", "f16", "bf16", "q8_0", "auto"],
|
||||
default="f16",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bigendian",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=Path,
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-temp-file",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-lazy",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--split-max-tensors",
|
||||
type=int,
|
||||
default=0,
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--split-max-size",
|
||||
type=str,
|
||||
default="0",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-tensor-first-split",
|
||||
action="store_true",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metadata",
|
||||
type=Path,
|
||||
help="",
|
||||
)
|
||||
parser.add_argument("--bigendian", action="store_true")
|
||||
parser.add_argument("model", type=Path)
|
||||
parser.add_argument("--use-temp-file", action="store_true")
|
||||
parser.add_argument("--no-lazy", action="store_true")
|
||||
parser.add_argument("--model-name", type=str, default=None)
|
||||
parser.add_argument("--verbose", action="store_true")
|
||||
parser.add_argument("--split-max-tensors", type=int, default=0)
|
||||
parser.add_argument("--split-max-size", type=str, default="0")
|
||||
parser.add_argument("--dry-run", action="store_true")
|
||||
parser.add_argument("--no-tensor-first-split", action="store_true")
|
||||
parser.add_argument("--metadata", type=Path)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
|
|
@ -28,7 +28,6 @@
|
|||
sys.path.insert(1, str(Path(__file__).parent / "gguf-py"))
|
||||
import gguf
|
||||
|
||||
# reuse model definitions from convert_hf_to_gguf.py
|
||||
from convert_hf_to_gguf import LazyTorchTensor, Model
|
||||
|
||||
logger = logging.getLogger("lora-to-gguf")
|
||||
|
@ -40,10 +39,9 @@ class PartialLoraTensor:
|
|||
B: Tensor | None = None
|
||||
|
||||
|
||||
# magic to support tensor shape modifications and splitting
|
||||
class LoraTorchTensor:
|
||||
_lora_A: Tensor # (n_rank, row_size)
|
||||
_lora_B: Tensor # (col_size, n_rank)
|
||||
_lora_A: Tensor
|
||||
_lora_B: Tensor
|
||||
_rank: int
|
||||
|
||||
def __init__(self, A: Tensor, B: Tensor):
|
||||
|
@ -61,20 +59,14 @@ def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
|
|||
|
||||
def __getitem__(
|
||||
self,
|
||||
indices: (
|
||||
SupportsIndex
|
||||
| slice
|
||||
| tuple[
|
||||
SupportsIndex | slice | Tensor, ...
|
||||
] # TODO: add ellipsis in the type signature
|
||||
),
|
||||
indices: SupportsIndex | slice | tuple[SupportsIndex | slice | Tensor, ...],
|
||||
) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
if isinstance(indices, SupportsIndex):
|
||||
if len(shape) > 2:
|
||||
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
||||
else:
|
||||
raise NotImplementedError # can't return a vector
|
||||
raise NotImplementedError
|
||||
elif isinstance(indices, slice):
|
||||
if len(shape) > 2:
|
||||
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
||||
|
@ -84,7 +76,7 @@ def __getitem__(
|
|||
assert len(indices) > 0
|
||||
if indices[-1] is Ellipsis:
|
||||
return self[indices[:-1]]
|
||||
# expand ellipsis
|
||||
|
||||
indices = tuple(
|
||||
u
|
||||
for v in (
|
||||
|
@ -104,7 +96,6 @@ def __getitem__(
|
|||
*(slice(None, None) for _ in range(len(indices), len(shape))),
|
||||
)
|
||||
|
||||
# TODO: make sure this is correct
|
||||
indices_A = (
|
||||
*(
|
||||
(
|
||||
|
@ -120,7 +111,7 @@ def __getitem__(
|
|||
indices_B = indices[:-1]
|
||||
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
|
||||
else:
|
||||
raise NotImplementedError # unknown indice type
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def dtype(self) -> torch.dtype:
|
||||
|
@ -143,9 +134,8 @@ def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
|
|||
new_shape = cast(tuple[int, ...], shape)
|
||||
orig_shape = self.shape
|
||||
if len(new_shape) < 2:
|
||||
raise NotImplementedError # can't become a vector
|
||||
raise NotImplementedError
|
||||
|
||||
# expand -1 in the shape
|
||||
if any(dim == -1 for dim in new_shape):
|
||||
n_elems = prod(orig_shape)
|
||||
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
|
||||
|
@ -155,7 +145,7 @@ def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
|
|||
)
|
||||
|
||||
if new_shape[-1] != orig_shape[-1]:
|
||||
raise NotImplementedError # can't reshape the row size trivially
|
||||
raise NotImplementedError
|
||||
|
||||
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
|
||||
shape_B = (*new_shape[:-1], self._rank)
|
||||
|
@ -174,7 +164,7 @@ def permute(self, *dims: int) -> LoraTorchTensor:
|
|||
shape = self.shape
|
||||
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
|
||||
if dims[-1] == -1:
|
||||
# TODO: support higher dimensional A shapes bigger than 1
|
||||
|
||||
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
|
||||
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
|
||||
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
|
||||
|
@ -182,7 +172,7 @@ def permute(self, *dims: int) -> LoraTorchTensor:
|
|||
self._lora_B.permute(*dims), self._lora_A.permute(*dims)
|
||||
)
|
||||
else:
|
||||
# TODO: compose the above two
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
|
||||
|
@ -201,7 +191,7 @@ def to(self, *args, **kwargs):
|
|||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
|
||||
del types # unused
|
||||
del types
|
||||
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
@ -245,58 +235,21 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
|
|||
return base_name
|
||||
|
||||
|
||||
def pyinstaller_include():
|
||||
# PyInstaller import
|
||||
pass
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile",
|
||||
type=Path,
|
||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--outfile", type=Path)
|
||||
parser.add_argument(
|
||||
"--outtype",
|
||||
type=str,
|
||||
choices=["f32", "f16", "bf16", "q8_0", "auto"],
|
||||
default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bigendian",
|
||||
action="store_true",
|
||||
help="model is executed on big endian machine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-lazy",
|
||||
action="store_true",
|
||||
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
help="increase output verbosity",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
action="store_true",
|
||||
help="only print out what will be done, without writing any new files",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="directory containing base model file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"lora_path",
|
||||
type=Path,
|
||||
help="directory containing LoRA adapter file",
|
||||
)
|
||||
parser.add_argument("--bigendian", action="store_true")
|
||||
parser.add_argument("--no-lazy", action="store_true")
|
||||
parser.add_argument("--verbose", action="store_true")
|
||||
parser.add_argument("--dry-run", action="store_true")
|
||||
parser.add_argument("--base", type=Path, required=True)
|
||||
parser.add_argument("lora_path", type=Path)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
@ -323,11 +276,11 @@ def parse_args() -> argparse.Namespace:
|
|||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
|
||||
fname_out = dir_lora
|
||||
|
||||
if os.path.exists(input_model):
|
||||
# lazy import load_file only if lora is in safetensors format.
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
lora_model = load_file(input_model, device="cpu")
|
||||
|
@ -335,7 +288,6 @@ def parse_args() -> argparse.Namespace:
|
|||
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
||||
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
||||
|
||||
# load base model
|
||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||
hparams = Model.load_hparams(dir_base_model)
|
||||
with torch.inference_mode():
|
||||
|
@ -431,6 +383,7 @@ def modify_tensors(
|
|||
dry_run=args.dry_run,
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
is_lora=True,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
|
|
Loading…
Reference in New Issue