mirror of https://github.com/leafspark/AutoGGUF
refactor: adapt gguf library to project
- remove comments - remove argparse help text
This commit is contained in:
parent
f7f9a457ea
commit
a7e8bf673e
|
@ -4403,83 +4403,81 @@ def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||||
|
|
||||||
|
|
||||||
def parse_args() -> argparse.Namespace:
|
def parse_args() -> argparse.Namespace:
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(description="")
|
||||||
description="Convert a huggingface model to a GGML compatible file"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--vocab-only",
|
"--vocab-only",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="extract only the vocab",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--outfile",
|
"--outfile",
|
||||||
type=Path,
|
type=Path,
|
||||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--outtype",
|
"--outtype",
|
||||||
type=str,
|
type=str,
|
||||||
choices=["f32", "f16", "bf16", "q8_0", "auto"],
|
choices=["f32", "f16", "bf16", "q8_0", "auto"],
|
||||||
default="f16",
|
default="f16",
|
||||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--bigendian",
|
"--bigendian",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="model is executed on big endian machine",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"model",
|
"model",
|
||||||
type=Path,
|
type=Path,
|
||||||
help="directory containing model file",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-temp-file",
|
"--use-temp-file",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="use the tempfile library while processing (helpful when running out of memory, process killed)",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--no-lazy",
|
"--no-lazy",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model-name",
|
"--model-name",
|
||||||
type=str,
|
type=str,
|
||||||
default=None,
|
default=None,
|
||||||
help="name of the model",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--verbose",
|
"--verbose",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="increase output verbosity",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--split-max-tensors",
|
"--split-max-tensors",
|
||||||
type=int,
|
type=int,
|
||||||
default=0,
|
default=0,
|
||||||
help="max tensors in each split",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--split-max-size",
|
"--split-max-size",
|
||||||
type=str,
|
type=str,
|
||||||
default="0",
|
default="0",
|
||||||
help="max size per split N(M|G)",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--dry-run",
|
"--dry-run",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="only print out a split plan and exit, without writing any new files",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--no-tensor-first-split",
|
"--no-tensor-first-split",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="do not add tensors to the first split (disabled by default)",
|
help="",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--metadata",
|
"--metadata",
|
||||||
type=Path,
|
type=Path,
|
||||||
help="Specify the path for an authorship metadata override file",
|
help="",
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
|
@ -3,19 +3,10 @@
|
||||||
from enum import Enum, IntEnum, auto
|
from enum import Enum, IntEnum, auto
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
#
|
GGUF_MAGIC = 0x46554747
|
||||||
# constants
|
|
||||||
#
|
|
||||||
|
|
||||||
GGUF_MAGIC = 0x46554747 # "GGUF"
|
|
||||||
GGUF_VERSION = 3
|
GGUF_VERSION = 3
|
||||||
GGUF_DEFAULT_ALIGNMENT = 32
|
GGUF_DEFAULT_ALIGNMENT = 32
|
||||||
GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
|
GGML_QUANT_VERSION = 2
|
||||||
|
|
||||||
#
|
|
||||||
# metadata keys
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
class Keys:
|
class Keys:
|
||||||
class General:
|
class General:
|
||||||
|
@ -25,7 +16,6 @@ class General:
|
||||||
ALIGNMENT = "general.alignment"
|
ALIGNMENT = "general.alignment"
|
||||||
FILE_TYPE = "general.file_type"
|
FILE_TYPE = "general.file_type"
|
||||||
|
|
||||||
# Authorship Metadata
|
|
||||||
NAME = "general.name"
|
NAME = "general.name"
|
||||||
AUTHOR = "general.author"
|
AUTHOR = "general.author"
|
||||||
VERSION = "general.version"
|
VERSION = "general.version"
|
||||||
|
@ -39,39 +29,30 @@ class General:
|
||||||
|
|
||||||
SIZE_LABEL = "general.size_label"
|
SIZE_LABEL = "general.size_label"
|
||||||
|
|
||||||
# Licensing details
|
|
||||||
LICENSE = "general.license"
|
LICENSE = "general.license"
|
||||||
LICENSE_NAME = "general.license.name"
|
LICENSE_NAME = "general.license.name"
|
||||||
LICENSE_LINK = "general.license.link"
|
LICENSE_LINK = "general.license.link"
|
||||||
|
|
||||||
# Typically represents the converted GGUF repo (Unless native)
|
URL = "general.url"
|
||||||
URL = "general.url" # Model Website/Paper
|
|
||||||
DOI = "general.doi"
|
DOI = "general.doi"
|
||||||
UUID = "general.uuid"
|
UUID = "general.uuid"
|
||||||
REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
|
REPO_URL = "general.repo_url"
|
||||||
|
|
||||||
# Model Source during conversion
|
SOURCE_URL = "general.source.url"
|
||||||
SOURCE_URL = "general.source.url" # Model Website/Paper
|
|
||||||
SOURCE_DOI = "general.source.doi"
|
SOURCE_DOI = "general.source.doi"
|
||||||
SOURCE_UUID = "general.source.uuid"
|
SOURCE_UUID = "general.source.uuid"
|
||||||
SOURCE_REPO_URL = (
|
SOURCE_REPO_URL = "general.source.repo_url"
|
||||||
"general.source.repo_url" # Model Source Repository (git/svn/etc...)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Base Model Source. There can be more than one source if it's a merged
|
|
||||||
# model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
|
|
||||||
# tracing linage of models as it is finetuned or merged over time.
|
|
||||||
BASE_MODEL_COUNT = "general.base_model.count"
|
BASE_MODEL_COUNT = "general.base_model.count"
|
||||||
BASE_MODEL_NAME = "general.base_model.{id}.name"
|
BASE_MODEL_NAME = "general.base_model.{id}.name"
|
||||||
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
|
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
|
||||||
BASE_MODEL_VERSION = "general.base_model.{id}.version"
|
BASE_MODEL_VERSION = "general.base_model.{id}.version"
|
||||||
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
|
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
|
||||||
BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
|
BASE_MODEL_URL = "general.base_model.{id}.url"
|
||||||
BASE_MODEL_DOI = "general.base_model.{id}.doi"
|
BASE_MODEL_DOI = "general.base_model.{id}.doi"
|
||||||
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
|
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
|
||||||
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
|
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url"
|
||||||
|
|
||||||
# Array based KV stores
|
|
||||||
TAGS = "general.tags"
|
TAGS = "general.tags"
|
||||||
LANGUAGES = "general.languages"
|
LANGUAGES = "general.languages"
|
||||||
DATASETS = "general.datasets"
|
DATASETS = "general.datasets"
|
||||||
|
@ -138,9 +119,7 @@ class Tokenizer:
|
||||||
PRE = "tokenizer.ggml.pre"
|
PRE = "tokenizer.ggml.pre"
|
||||||
LIST = "tokenizer.ggml.tokens"
|
LIST = "tokenizer.ggml.tokens"
|
||||||
TOKEN_TYPE = "tokenizer.ggml.token_type"
|
TOKEN_TYPE = "tokenizer.ggml.token_type"
|
||||||
TOKEN_TYPE_COUNT = (
|
TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count"
|
||||||
"tokenizer.ggml.token_type_count" # for BERT-style token types
|
|
||||||
)
|
|
||||||
SCORES = "tokenizer.ggml.scores"
|
SCORES = "tokenizer.ggml.scores"
|
||||||
MERGES = "tokenizer.ggml.merges"
|
MERGES = "tokenizer.ggml.merges"
|
||||||
BOS_ID = "tokenizer.ggml.bos_token_id"
|
BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||||
|
@ -160,27 +139,21 @@ class Tokenizer:
|
||||||
CHAT_TEMPLATE = "tokenizer.chat_template"
|
CHAT_TEMPLATE = "tokenizer.chat_template"
|
||||||
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
|
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
|
||||||
CHAT_TEMPLATES = "tokenizer.chat_templates"
|
CHAT_TEMPLATES = "tokenizer.chat_templates"
|
||||||
# FIM/Infill special tokens constants
|
|
||||||
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
|
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
|
||||||
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
|
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
|
||||||
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
|
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
|
||||||
EOT_ID = "tokenizer.ggml.eot_token_id"
|
EOT_ID = "tokenizer.ggml.eot_token_id"
|
||||||
|
EOM_ID = "tokenizer.ggml.eom_token_id"
|
||||||
|
|
||||||
class Adapter:
|
class Adapter:
|
||||||
TYPE = "adapter.type"
|
TYPE = "adapter.type"
|
||||||
LORA_ALPHA = "adapter.lora.alpha"
|
LORA_ALPHA = "adapter.lora.alpha"
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
# recommended mapping of model tensor names for storage in gguf
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
class GGUFType:
|
class GGUFType:
|
||||||
MODEL = "model"
|
MODEL = "model"
|
||||||
ADAPTER = "adapter"
|
ADAPTER = "adapter"
|
||||||
|
|
||||||
|
|
||||||
class MODEL_ARCH(IntEnum):
|
class MODEL_ARCH(IntEnum):
|
||||||
LLAMA = auto()
|
LLAMA = auto()
|
||||||
FALCON = auto()
|
FALCON = auto()
|
||||||
|
@ -221,8 +194,10 @@ class MODEL_ARCH(IntEnum):
|
||||||
CHATGLM = auto()
|
CHATGLM = auto()
|
||||||
BITNET = auto()
|
BITNET = auto()
|
||||||
T5 = auto()
|
T5 = auto()
|
||||||
|
T5ENCODER = auto()
|
||||||
JAIS = auto()
|
JAIS = auto()
|
||||||
|
NEMOTRON = auto()
|
||||||
|
EXAONE = auto()
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
TOKEN_EMBD = auto()
|
TOKEN_EMBD = auto()
|
||||||
|
@ -307,7 +282,6 @@ class MODEL_TENSOR(IntEnum):
|
||||||
ENC_FFN_UP = auto()
|
ENC_FFN_UP = auto()
|
||||||
ENC_OUTPUT_NORM = auto()
|
ENC_OUTPUT_NORM = auto()
|
||||||
|
|
||||||
|
|
||||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.LLAMA: "llama",
|
MODEL_ARCH.LLAMA: "llama",
|
||||||
MODEL_ARCH.FALCON: "falcon",
|
MODEL_ARCH.FALCON: "falcon",
|
||||||
|
@ -348,7 +322,10 @@ class MODEL_TENSOR(IntEnum):
|
||||||
MODEL_ARCH.CHATGLM: "chatglm",
|
MODEL_ARCH.CHATGLM: "chatglm",
|
||||||
MODEL_ARCH.BITNET: "bitnet",
|
MODEL_ARCH.BITNET: "bitnet",
|
||||||
MODEL_ARCH.T5: "t5",
|
MODEL_ARCH.T5: "t5",
|
||||||
|
MODEL_ARCH.T5ENCODER: "t5encoder",
|
||||||
MODEL_ARCH.JAIS: "jais",
|
MODEL_ARCH.JAIS: "jais",
|
||||||
|
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||||
|
MODEL_ARCH.EXAONE: "exaone",
|
||||||
}
|
}
|
||||||
|
|
||||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
|
@ -981,7 +958,7 @@ class MODEL_TENSOR(IntEnum):
|
||||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||||
],
|
],
|
||||||
MODEL_ARCH.CHATGLM: [
|
MODEL_ARCH.CHATGLM : [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
@ -1040,6 +1017,21 @@ class MODEL_TENSOR(IntEnum):
|
||||||
MODEL_TENSOR.ENC_FFN_UP,
|
MODEL_TENSOR.ENC_FFN_UP,
|
||||||
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.T5ENCODER: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ENC_ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ENC_ATTN_Q,
|
||||||
|
MODEL_TENSOR.ENC_ATTN_K,
|
||||||
|
MODEL_TENSOR.ENC_ATTN_V,
|
||||||
|
MODEL_TENSOR.ENC_ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ENC_ATTN_REL_B,
|
||||||
|
MODEL_TENSOR.ENC_FFN_NORM,
|
||||||
|
MODEL_TENSOR.ENC_FFN_GATE,
|
||||||
|
MODEL_TENSOR.ENC_FFN_DOWN,
|
||||||
|
MODEL_TENSOR.ENC_FFN_UP,
|
||||||
|
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
||||||
|
],
|
||||||
MODEL_ARCH.JAIS: [
|
MODEL_ARCH.JAIS: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
@ -1052,10 +1044,40 @@ class MODEL_TENSOR(IntEnum):
|
||||||
MODEL_TENSOR.FFN_GATE,
|
MODEL_TENSOR.FFN_GATE,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
# TODO
|
MODEL_ARCH.NEMOTRON: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.EXAONE: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# tensors that will not be serialized
|
|
||||||
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_ARCH.LLAMA: [
|
MODEL_ARCH.LLAMA: [
|
||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
@ -1092,13 +1114,12 @@ class MODEL_TENSOR(IntEnum):
|
||||||
MODEL_ARCH.CHATGLM: [
|
MODEL_ARCH.CHATGLM: [
|
||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.NEMOTRON: [
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
}
|
}
|
||||||
|
|
||||||
#
|
|
||||||
# types
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
class TokenType(IntEnum):
|
class TokenType(IntEnum):
|
||||||
NORMAL = 1
|
NORMAL = 1
|
||||||
UNKNOWN = 2
|
UNKNOWN = 2
|
||||||
|
@ -1107,19 +1128,16 @@ class TokenType(IntEnum):
|
||||||
UNUSED = 5
|
UNUSED = 5
|
||||||
BYTE = 6
|
BYTE = 6
|
||||||
|
|
||||||
|
|
||||||
class RopeScalingType(Enum):
|
class RopeScalingType(Enum):
|
||||||
NONE = "none"
|
NONE = 'none'
|
||||||
LINEAR = "linear"
|
LINEAR = 'linear'
|
||||||
YARN = "yarn"
|
YARN = 'yarn'
|
||||||
|
|
||||||
|
|
||||||
class PoolingType(IntEnum):
|
class PoolingType(IntEnum):
|
||||||
NONE = 0
|
NONE = 0
|
||||||
MEAN = 1
|
MEAN = 1
|
||||||
CLS = 2
|
CLS = 2
|
||||||
|
|
||||||
|
|
||||||
class GGMLQuantizationType(IntEnum):
|
class GGMLQuantizationType(IntEnum):
|
||||||
F32 = 0
|
F32 = 0
|
||||||
F16 = 1
|
F16 = 1
|
||||||
|
@ -1150,56 +1168,52 @@ class GGMLQuantizationType(IntEnum):
|
||||||
F64 = 28
|
F64 = 28
|
||||||
IQ1_M = 29
|
IQ1_M = 29
|
||||||
BF16 = 30
|
BF16 = 30
|
||||||
|
Q4_0_4_4 = 31
|
||||||
|
Q4_0_4_8 = 32
|
||||||
|
Q4_0_8_8 = 33
|
||||||
|
|
||||||
|
|
||||||
# TODO: add GGMLFileType from ggml_ftype in ggml.h
|
|
||||||
|
|
||||||
|
|
||||||
# from llama_ftype in llama.h
|
|
||||||
# ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
|
|
||||||
class LlamaFileType(IntEnum):
|
class LlamaFileType(IntEnum):
|
||||||
ALL_F32 = 0
|
ALL_F32 = 0
|
||||||
MOSTLY_F16 = 1 # except 1d tensors
|
MOSTLY_F16 = 1
|
||||||
MOSTLY_Q4_0 = 2 # except 1d tensors
|
MOSTLY_Q4_0 = 2
|
||||||
MOSTLY_Q4_1 = 3 # except 1d tensors
|
MOSTLY_Q4_1 = 3
|
||||||
MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
|
|
||||||
# MOSTLY_Q4_2 = 5 # support has been removed
|
|
||||||
# MOSTLY_Q4_3 = 6 # support has been removed
|
|
||||||
MOSTLY_Q8_0 = 7 # except 1d tensors
|
|
||||||
MOSTLY_Q5_0 = 8 # except 1d tensors
|
|
||||||
MOSTLY_Q5_1 = 9 # except 1d tensors
|
|
||||||
MOSTLY_Q2_K = 10 # except 1d tensors
|
|
||||||
MOSTLY_Q3_K_S = 11 # except 1d tensors
|
|
||||||
MOSTLY_Q3_K_M = 12 # except 1d tensors
|
|
||||||
MOSTLY_Q3_K_L = 13 # except 1d tensors
|
|
||||||
MOSTLY_Q4_K_S = 14 # except 1d tensors
|
|
||||||
MOSTLY_Q4_K_M = 15 # except 1d tensors
|
|
||||||
MOSTLY_Q5_K_S = 16 # except 1d tensors
|
|
||||||
MOSTLY_Q5_K_M = 17 # except 1d tensors
|
|
||||||
MOSTLY_Q6_K = 18 # except 1d tensors
|
|
||||||
MOSTLY_IQ2_XXS = 19 # except 1d tensors
|
|
||||||
MOSTLY_IQ2_XS = 20 # except 1d tensors
|
|
||||||
MOSTLY_Q2_K_S = 21 # except 1d tensors
|
|
||||||
MOSTLY_IQ3_XS = 22 # except 1d tensors
|
|
||||||
MOSTLY_IQ3_XXS = 23 # except 1d tensors
|
|
||||||
MOSTLY_IQ1_S = 24 # except 1d tensors
|
|
||||||
MOSTLY_IQ4_NL = 25 # except 1d tensors
|
|
||||||
MOSTLY_IQ3_S = 26 # except 1d tensors
|
|
||||||
MOSTLY_IQ3_M = 27 # except 1d tensors
|
|
||||||
MOSTLY_IQ2_S = 28 # except 1d tensors
|
|
||||||
MOSTLY_IQ2_M = 29 # except 1d tensors
|
|
||||||
MOSTLY_IQ4_XS = 30 # except 1d tensors
|
|
||||||
MOSTLY_IQ1_M = 31 # except 1d tensors
|
|
||||||
MOSTLY_BF16 = 32 # except 1d tensors
|
|
||||||
|
|
||||||
GUESSED = 1024 # not specified in the model file
|
MOSTLY_Q8_0 = 7
|
||||||
|
MOSTLY_Q5_0 = 8
|
||||||
|
MOSTLY_Q5_1 = 9
|
||||||
|
MOSTLY_Q2_K = 10
|
||||||
|
MOSTLY_Q3_K_S = 11
|
||||||
|
MOSTLY_Q3_K_M = 12
|
||||||
|
MOSTLY_Q3_K_L = 13
|
||||||
|
MOSTLY_Q4_K_S = 14
|
||||||
|
MOSTLY_Q4_K_M = 15
|
||||||
|
MOSTLY_Q5_K_S = 16
|
||||||
|
MOSTLY_Q5_K_M = 17
|
||||||
|
MOSTLY_Q6_K = 18
|
||||||
|
MOSTLY_IQ2_XXS = 19
|
||||||
|
MOSTLY_IQ2_XS = 20
|
||||||
|
MOSTLY_Q2_K_S = 21
|
||||||
|
MOSTLY_IQ3_XS = 22
|
||||||
|
MOSTLY_IQ3_XXS = 23
|
||||||
|
MOSTLY_IQ1_S = 24
|
||||||
|
MOSTLY_IQ4_NL = 25
|
||||||
|
MOSTLY_IQ3_S = 26
|
||||||
|
MOSTLY_IQ3_M = 27
|
||||||
|
MOSTLY_IQ2_S = 28
|
||||||
|
MOSTLY_IQ2_M = 29
|
||||||
|
MOSTLY_IQ4_XS = 30
|
||||||
|
MOSTLY_IQ1_M = 31
|
||||||
|
MOSTLY_BF16 = 32
|
||||||
|
MOSTLY_Q4_0_4_4 = 33
|
||||||
|
MOSTLY_Q4_0_4_8 = 34
|
||||||
|
MOSTLY_Q4_0_8_8 = 35
|
||||||
|
|
||||||
|
GUESSED = 1024
|
||||||
|
|
||||||
class GGUFEndian(IntEnum):
|
class GGUFEndian(IntEnum):
|
||||||
LITTLE = 0
|
LITTLE = 0
|
||||||
BIG = 1
|
BIG = 1
|
||||||
|
|
||||||
|
|
||||||
class GGUFValueType(IntEnum):
|
class GGUFValueType(IntEnum):
|
||||||
UINT8 = 0
|
UINT8 = 0
|
||||||
INT8 = 1
|
INT8 = 1
|
||||||
|
@ -1227,12 +1241,10 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
return GGUFValueType.BOOL
|
return GGUFValueType.BOOL
|
||||||
elif isinstance(val, int):
|
elif isinstance(val, int):
|
||||||
return GGUFValueType.INT32
|
return GGUFValueType.INT32
|
||||||
# TODO: need help with 64-bit types in Python
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown type: {type(val)}")
|
raise ValueError(f"Unknown type: {type(val)}")
|
||||||
|
|
||||||
|
|
||||||
# Items here are (block size, type size)
|
|
||||||
QK_K = 256
|
QK_K = 256
|
||||||
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
||||||
GGMLQuantizationType.F32: (1, 4),
|
GGMLQuantizationType.F32: (1, 4),
|
||||||
|
@ -1264,12 +1276,11 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
GGMLQuantizationType.F64: (1, 8),
|
GGMLQuantizationType.F64: (1, 8),
|
||||||
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
|
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
|
||||||
GGMLQuantizationType.BF16: (1, 2),
|
GGMLQuantizationType.BF16: (1, 2),
|
||||||
|
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
|
||||||
|
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
|
||||||
|
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
# Aliases for backward compatibility.
|
|
||||||
|
|
||||||
# general
|
|
||||||
KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
|
KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
|
||||||
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
|
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
|
||||||
KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
|
KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
|
||||||
|
@ -1281,7 +1292,6 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
|
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
|
||||||
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
|
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
|
||||||
|
|
||||||
# LLM
|
|
||||||
KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
|
KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
|
||||||
KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
|
KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
|
||||||
KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
|
KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
|
||||||
|
@ -1290,7 +1300,6 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
|
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
|
||||||
KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
|
KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
|
||||||
|
|
||||||
# attention
|
|
||||||
KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
|
KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
|
||||||
KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
|
KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
|
||||||
KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
|
KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
|
||||||
|
@ -1298,7 +1307,6 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
|
KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
|
||||||
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
|
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
|
||||||
|
|
||||||
# RoPE
|
|
||||||
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
|
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
|
||||||
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
|
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
|
||||||
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
|
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
|
||||||
|
@ -1306,13 +1314,11 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
|
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
|
||||||
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
|
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
|
||||||
|
|
||||||
# SSM
|
|
||||||
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
|
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
|
||||||
KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
|
KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
|
||||||
KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
|
KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
|
||||||
KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
|
KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
|
||||||
|
|
||||||
# tokenization
|
|
||||||
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
|
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
|
||||||
KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
|
KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
|
||||||
KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
|
KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
|
||||||
|
@ -1332,3 +1338,4 @@ def get_type(val: Any) -> GGUFValueType:
|
||||||
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
|
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
|
||||||
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
|
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
|
||||||
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
||||||
|
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|
|
@ -4,471 +4,569 @@
|
||||||
|
|
||||||
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
|
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
|
||||||
|
|
||||||
|
|
||||||
class TensorNameMap:
|
class TensorNameMap:
|
||||||
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
# Token embeddings
|
|
||||||
MODEL_TENSOR.TOKEN_EMBD: (
|
MODEL_TENSOR.TOKEN_EMBD: (
|
||||||
"gpt_neox.embed_in", # gptneox
|
"gpt_neox.embed_in",
|
||||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
|
"transformer.wte",
|
||||||
"transformer.word_embeddings", # falcon
|
"transformer.word_embeddings",
|
||||||
"word_embeddings", # bloom
|
"word_embeddings",
|
||||||
"model.embed_tokens", # llama-hf
|
"model.embed_tokens",
|
||||||
"tok_embeddings", # llama-pth
|
"tok_embeddings",
|
||||||
"embeddings.word_embeddings", # bert nomic-bert
|
"embeddings.word_embeddings",
|
||||||
"language_model.embedding.word_embeddings", # persimmon
|
"language_model.embedding.word_embeddings",
|
||||||
"wte", # gpt2
|
"wte",
|
||||||
"transformer.embd.wte", # phi2
|
"transformer.embd.wte",
|
||||||
"model.tok_embeddings", # internlm2
|
"model.tok_embeddings",
|
||||||
"model.embedding", # mamba-qbert
|
"model.embedding",
|
||||||
"backbone.embedding", # mamba
|
"backbone.embedding",
|
||||||
"backbone.embeddings", # mamba-hf
|
"backbone.embeddings",
|
||||||
"transformer.in_out_embed", # Grok
|
"transformer.in_out_embed",
|
||||||
"embedding.word_embeddings", # chatglm
|
"embedding.word_embeddings",
|
||||||
"transformer.token_embeddings", # openelm
|
"transformer.token_embeddings",
|
||||||
"shared", # t5
|
"shared",
|
||||||
),
|
),
|
||||||
# Token type embeddings
|
|
||||||
MODEL_TENSOR.TOKEN_TYPES: (
|
MODEL_TENSOR.TOKEN_TYPES: (
|
||||||
"embeddings.token_type_embeddings", # bert nomic-bert
|
"embeddings.token_type_embeddings",
|
||||||
),
|
),
|
||||||
# Normalization of token embeddings
|
|
||||||
MODEL_TENSOR.TOKEN_EMBD_NORM: (
|
MODEL_TENSOR.TOKEN_EMBD_NORM: (
|
||||||
"word_embeddings_layernorm", # bloom
|
"word_embeddings_layernorm",
|
||||||
"embeddings.LayerNorm", # bert
|
"embeddings.LayerNorm",
|
||||||
"emb_ln", # nomic-bert
|
"emb_ln",
|
||||||
"transformer.norm", # openelm
|
"transformer.norm",
|
||||||
),
|
),
|
||||||
# Position embeddings
|
|
||||||
MODEL_TENSOR.POS_EMBD: (
|
MODEL_TENSOR.POS_EMBD: (
|
||||||
"transformer.wpe", # gpt2
|
"transformer.wpe",
|
||||||
"embeddings.position_embeddings", # bert
|
"embeddings.position_embeddings",
|
||||||
"wpe", # gpt2
|
"wpe",
|
||||||
),
|
),
|
||||||
# Output
|
|
||||||
MODEL_TENSOR.OUTPUT: (
|
MODEL_TENSOR.OUTPUT: (
|
||||||
"embed_out", # gptneox
|
"embed_out",
|
||||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
|
"lm_head",
|
||||||
"output", # llama-pth bloom internlm2
|
"output",
|
||||||
"word_embeddings_for_head", # persimmon
|
"word_embeddings_for_head",
|
||||||
"lm_head.linear", # phi2
|
"lm_head.linear",
|
||||||
"output_layer", # chatglm
|
"output_layer",
|
||||||
),
|
),
|
||||||
# Output norm
|
|
||||||
MODEL_TENSOR.OUTPUT_NORM: (
|
MODEL_TENSOR.OUTPUT_NORM: (
|
||||||
"gpt_neox.final_layer_norm", # gptneox
|
"gpt_neox.final_layer_norm",
|
||||||
"transformer.ln_f", # gpt2 gpt-j falcon jais
|
"transformer.ln_f",
|
||||||
"model.norm", # llama-hf baichuan internlm2
|
"model.norm",
|
||||||
"norm", # llama-pth
|
"norm",
|
||||||
"transformer.norm_f", # mpt dbrx
|
"transformer.norm_f",
|
||||||
"ln_f", # refact bloom qwen gpt2
|
"ln_f",
|
||||||
"language_model.encoder.final_layernorm", # persimmon
|
"language_model.encoder.final_layernorm",
|
||||||
"model.final_layernorm", # persimmon
|
"model.final_layernorm",
|
||||||
"lm_head.ln", # phi2
|
"lm_head.ln",
|
||||||
"model.norm_f", # mamba-qbert
|
"model.norm_f",
|
||||||
"backbone.norm_f", # mamba
|
"backbone.norm_f",
|
||||||
"transformer.rms_norm", # Grok
|
"transformer.rms_norm",
|
||||||
"encoder.final_layernorm", # chatglm
|
"encoder.final_layernorm",
|
||||||
"transformer.norm", # openelm
|
"transformer.norm",
|
||||||
|
"model.norm",
|
||||||
),
|
),
|
||||||
# Rope frequencies
|
|
||||||
MODEL_TENSOR.ROPE_FREQS: (
|
MODEL_TENSOR.ROPE_FREQS: (
|
||||||
"rope.freqs", # llama-pth
|
"rope.freqs",
|
||||||
"rotary_pos_emb.inv_freq", # chatglm
|
"rotary_pos_emb.inv_freq",
|
||||||
),
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
# Attention norm
|
|
||||||
MODEL_TENSOR.ATTN_NORM: (
|
MODEL_TENSOR.ATTN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.input_layernorm",
|
||||||
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
|
"transformer.h.{bid}.ln_1",
|
||||||
"transformer.blocks.{bid}.norm_1", # mpt
|
"transformer.blocks.{bid}.norm_1",
|
||||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
"transformer.h.{bid}.input_layernorm",
|
||||||
"h.{bid}.input_layernorm", # bloom
|
"h.{bid}.input_layernorm",
|
||||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
"transformer.h.{bid}.ln_mlp",
|
||||||
"model.layers.{bid}.input_layernorm", # llama-hf
|
"model.layers.{bid}.input_layernorm",
|
||||||
"layers.{bid}.attention_norm", # llama-pth
|
"layers.{bid}.attention_norm",
|
||||||
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
"language_model.encoder.layers.{bid}.input_layernorm",
|
||||||
"model.layers.{bid}.ln1", # yi
|
"model.layers.{bid}.ln1",
|
||||||
"h.{bid}.ln_1", # gpt2
|
"h.{bid}.ln_1",
|
||||||
"transformer.h.{bid}.ln", # phi2
|
"transformer.h.{bid}.ln",
|
||||||
"model.layers.layers.{bid}.norm", # plamo
|
"model.layers.layers.{bid}.norm",
|
||||||
"model.layers.{bid}.attention_norm", # internlm2
|
"model.layers.{bid}.attention_norm",
|
||||||
"model.layers.{bid}.norm", # mamba-qbert
|
"model.layers.{bid}.norm",
|
||||||
"backbone.layers.{bid}.norm", # mamba
|
"backbone.layers.{bid}.norm",
|
||||||
"transformer.decoder_layer.{bid}.rms_norm", # Grok
|
"transformer.decoder_layer.{bid}.rms_norm",
|
||||||
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
|
"transformer.blocks.{bid}.norm_attn_norm.norm_1",
|
||||||
"encoder.layers.{bid}.input_layernorm", # chatglm
|
"encoder.layers.{bid}.input_layernorm",
|
||||||
"transformer.layers.{bid}.attn_norm", # openelm
|
"transformer.layers.{bid}.attn_norm",
|
||||||
),
|
),
|
||||||
# Attention norm 2
|
|
||||||
MODEL_TENSOR.ATTN_NORM_2: (
|
MODEL_TENSOR.ATTN_NORM_2: (
|
||||||
"transformer.h.{bid}.ln_attn", # falcon40b
|
"transformer.h.{bid}.ln_attn",
|
||||||
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code
|
"encoder.layer.{bid}.layer_norm_1",
|
||||||
),
|
),
|
||||||
# Attention query-key-value
|
|
||||||
MODEL_TENSOR.ATTN_QKV: (
|
MODEL_TENSOR.ATTN_QKV: (
|
||||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
"gpt_neox.layers.{bid}.attention.query_key_value",
|
||||||
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
|
"transformer.h.{bid}.attn.c_attn",
|
||||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
"transformer.blocks.{bid}.attn.Wqkv",
|
||||||
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
|
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv",
|
||||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
"transformer.h.{bid}.self_attention.query_key_value",
|
||||||
"h.{bid}.self_attention.query_key_value", # bloom
|
"h.{bid}.self_attention.query_key_value",
|
||||||
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.query_key_value",
|
||||||
"model.layers.{bid}.self_attn.query_key_value", # persimmon
|
"model.layers.{bid}.self_attn.query_key_value",
|
||||||
"h.{bid}.attn.c_attn", # gpt2
|
"h.{bid}.attn.c_attn",
|
||||||
"transformer.h.{bid}.mixer.Wqkv", # phi2
|
"transformer.h.{bid}.mixer.Wqkv",
|
||||||
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
|
"encoder.layers.{bid}.attn.Wqkv",
|
||||||
"model.layers.{bid}.self_attn.qkv_proj", # phi3
|
"model.layers.{bid}.self_attn.qkv_proj",
|
||||||
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
|
"encoder.layers.{bid}.self_attention.query_key_value",
|
||||||
"transformer.layers.{bid}.attn.qkv_proj", # openelm
|
"transformer.layers.{bid}.attn.qkv_proj",
|
||||||
),
|
),
|
||||||
# Attention query
|
|
||||||
MODEL_TENSOR.ATTN_Q: (
|
MODEL_TENSOR.ATTN_Q: (
|
||||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
"model.layers.{bid}.self_attn.q_proj",
|
||||||
"layers.{bid}.attention.wq", # llama-pth
|
"layers.{bid}.attention.wq",
|
||||||
"encoder.layer.{bid}.attention.self.query", # bert
|
"encoder.layer.{bid}.attention.self.query",
|
||||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
"transformer.h.{bid}.attn.q_proj",
|
||||||
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.q_proj",
|
||||||
"model.layers.{bid}.attention.wq", # internlm2
|
"model.layers.{bid}.attention.wq",
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.query", # Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.query",
|
||||||
|
"transformer.h.{bid}.attn.attention.q_proj",
|
||||||
),
|
),
|
||||||
# Attention key
|
|
||||||
MODEL_TENSOR.ATTN_K: (
|
MODEL_TENSOR.ATTN_K: (
|
||||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
"model.layers.{bid}.self_attn.k_proj",
|
||||||
"layers.{bid}.attention.wk", # llama-pth
|
"layers.{bid}.attention.wk",
|
||||||
"encoder.layer.{bid}.attention.self.key", # bert
|
"encoder.layer.{bid}.attention.self.key",
|
||||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
"transformer.h.{bid}.attn.k_proj",
|
||||||
"transformer.h.{bid}.attn.k", # refact
|
"transformer.h.{bid}.attn.k",
|
||||||
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.k_proj",
|
||||||
"model.layers.{bid}.attention.wk", # internlm2
|
"model.layers.{bid}.attention.wk",
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.key", # Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.key",
|
||||||
|
"transformer.h.{bid}.attn.attention.k_proj",
|
||||||
),
|
),
|
||||||
# Attention value
|
|
||||||
MODEL_TENSOR.ATTN_V: (
|
MODEL_TENSOR.ATTN_V: (
|
||||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
"model.layers.{bid}.self_attn.v_proj",
|
||||||
"layers.{bid}.attention.wv", # llama-pth
|
"layers.{bid}.attention.wv",
|
||||||
"encoder.layer.{bid}.attention.self.value", # bert
|
"encoder.layer.{bid}.attention.self.value",
|
||||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
"transformer.h.{bid}.attn.v_proj",
|
||||||
"transformer.h.{bid}.attn.v", # refact
|
"transformer.h.{bid}.attn.v",
|
||||||
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.v_proj",
|
||||||
"model.layers.{bid}.attention.wv", # internlm2
|
"model.layers.{bid}.attention.wv",
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.value", # Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.value",
|
||||||
|
"transformer.h.{bid}.attn.attention.v_proj",
|
||||||
),
|
),
|
||||||
# Attention output
|
|
||||||
MODEL_TENSOR.ATTN_OUT: (
|
MODEL_TENSOR.ATTN_OUT: (
|
||||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
"gpt_neox.layers.{bid}.attention.dense",
|
||||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
|
"transformer.h.{bid}.attn.c_proj",
|
||||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
"transformer.blocks.{bid}.attn.out_proj",
|
||||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
"transformer.h.{bid}.self_attention.dense",
|
||||||
"h.{bid}.self_attention.dense", # bloom
|
"h.{bid}.self_attention.dense",
|
||||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
"model.layers.{bid}.self_attn.o_proj",
|
||||||
"layers.{bid}.attention.wo", # llama-pth
|
"layers.{bid}.attention.wo",
|
||||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
"encoder.layer.{bid}.attention.output.dense",
|
||||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
"transformer.h.{bid}.attn.out_proj",
|
||||||
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.dense",
|
||||||
"model.layers.{bid}.self_attn.dense", # persimmon
|
"model.layers.{bid}.self_attn.dense",
|
||||||
"h.{bid}.attn.c_proj", # gpt2
|
"h.{bid}.attn.c_proj",
|
||||||
"transformer.h.{bid}.mixer.out_proj", # phi2
|
"transformer.h.{bid}.mixer.out_proj",
|
||||||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.o_proj",
|
||||||
"model.layers.{bid}.attention.wo", # internlm2
|
"model.layers.{bid}.attention.wo",
|
||||||
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
"encoder.layers.{bid}.attn.out_proj",
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.linear",
|
||||||
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
|
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj",
|
||||||
"encoder.layers.{bid}.self_attention.dense", # chatglm
|
"encoder.layers.{bid}.self_attention.dense",
|
||||||
"transformer.layers.{bid}.attn.out_proj", # openelm
|
"transformer.layers.{bid}.attn.out_proj",
|
||||||
|
"transformer.h.{bid}.attn.attention.out_proj",
|
||||||
),
|
),
|
||||||
# Attention output norm
|
|
||||||
MODEL_TENSOR.ATTN_OUT_NORM: (
|
MODEL_TENSOR.ATTN_OUT_NORM: (
|
||||||
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
"encoder.layer.{bid}.attention.output.LayerNorm",
|
||||||
"encoder.layers.{bid}.norm1", # nomic-bert
|
"encoder.layers.{bid}.norm1",
|
||||||
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
|
"transformer.decoder_layer.{bid}.rms_norm_1",
|
||||||
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
|
"transformer.blocks.{bid}.norm_attn_norm.norm_2",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_POST_NORM: (
|
MODEL_TENSOR.ATTN_POST_NORM: (
|
||||||
"model.layers.{bid}.post_attention_layernorm", # gemma2
|
"model.layers.{bid}.post_attention_layernorm",
|
||||||
),
|
),
|
||||||
# Rotary embeddings
|
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD: (
|
MODEL_TENSOR.ATTN_ROT_EMBD: (
|
||||||
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
|
"model.layers.{bid}.self_attn.rotary_emb.inv_freq",
|
||||||
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
|
"layers.{bid}.attention.inner_attention.rope.freqs",
|
||||||
"model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
|
"model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq",
|
||||||
"transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
|
"transformer.h.{bid}.attn.rotary_emb.inv_freq",
|
||||||
),
|
),
|
||||||
# Feed-forward norm
|
|
||||||
MODEL_TENSOR.FFN_NORM: (
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.post_attention_layernorm",
|
||||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
|
"transformer.h.{bid}.ln_2",
|
||||||
"h.{bid}.post_attention_layernorm", # bloom
|
"h.{bid}.post_attention_layernorm",
|
||||||
"transformer.blocks.{bid}.norm_2", # mpt
|
"transformer.blocks.{bid}.norm_2",
|
||||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
"model.layers.{bid}.post_attention_layernorm",
|
||||||
"layers.{bid}.ffn_norm", # llama-pth
|
"layers.{bid}.ffn_norm",
|
||||||
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
"language_model.encoder.layers.{bid}.post_attention_layernorm",
|
||||||
"model.layers.{bid}.ln2", # yi
|
"model.layers.{bid}.ln2",
|
||||||
"h.{bid}.ln_2", # gpt2
|
"h.{bid}.ln_2",
|
||||||
"model.layers.{bid}.ffn_norm", # internlm2
|
"model.layers.{bid}.ffn_norm",
|
||||||
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
|
"transformer.decoder_layer.{bid}.rms_norm_2",
|
||||||
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
|
"encoder.layers.{bid}.post_attention_layernorm",
|
||||||
"transformer.layers.{bid}.ffn_norm", # openelm
|
"transformer.layers.{bid}.ffn_norm",
|
||||||
),
|
),
|
||||||
# Post feed-forward norm
|
|
||||||
MODEL_TENSOR.FFN_PRE_NORM: (
|
MODEL_TENSOR.FFN_PRE_NORM: (
|
||||||
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2
|
"model.layers.{bid}.pre_feedforward_layernorm",
|
||||||
),
|
),
|
||||||
# Post feed-forward norm
|
|
||||||
MODEL_TENSOR.FFN_POST_NORM: (
|
MODEL_TENSOR.FFN_POST_NORM: (
|
||||||
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
|
"model.layers.{bid}.post_feedforward_layernorm",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_INP: (
|
MODEL_TENSOR.FFN_GATE_INP: (
|
||||||
"layers.{bid}.feed_forward.gate", # mixtral
|
"layers.{bid}.feed_forward.gate",
|
||||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
"model.layers.{bid}.block_sparse_moe.gate",
|
||||||
"model.layers.{bid}.mlp.gate", # qwen2moe
|
"model.layers.{bid}.mlp.gate",
|
||||||
"transformer.decoder_layer.{bid}.router", # Grok
|
"transformer.decoder_layer.{bid}.router",
|
||||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
"transformer.blocks.{bid}.ffn.router.layer",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||||
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
|
"model.layers.{bid}.mlp.shared_expert_gate",
|
||||||
),
|
),
|
||||||
# Feed-forward up
|
|
||||||
MODEL_TENSOR.FFN_UP: (
|
MODEL_TENSOR.FFN_UP: (
|
||||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h",
|
||||||
"transformer.h.{bid}.mlp.c_fc", # gpt2 jais
|
"transformer.h.{bid}.mlp.c_fc",
|
||||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
"transformer.blocks.{bid}.ffn.up_proj",
|
||||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
"transformer.h.{bid}.mlp.dense_h_to_4h",
|
||||||
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
"h.{bid}.mlp.dense_h_to_4h",
|
||||||
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
|
"model.layers.{bid}.mlp.up_proj",
|
||||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
"layers.{bid}.feed_forward.w3",
|
||||||
"encoder.layer.{bid}.intermediate.dense", # bert
|
"encoder.layer.{bid}.intermediate.dense",
|
||||||
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
"transformer.h.{bid}.mlp.fc_in",
|
||||||
"transformer.h.{bid}.mlp.linear_3", # refact
|
"transformer.h.{bid}.mlp.linear_3",
|
||||||
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h",
|
||||||
"model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
"model.layers.{bid}.mlp.dense_h_to_4h",
|
||||||
"transformer.h.{bid}.mlp.w1", # qwen
|
"transformer.h.{bid}.mlp.w1",
|
||||||
"h.{bid}.mlp.c_fc", # gpt2
|
"h.{bid}.mlp.c_fc",
|
||||||
"transformer.h.{bid}.mlp.fc1", # phi2
|
"transformer.h.{bid}.mlp.fc1",
|
||||||
"model.layers.{bid}.mlp.fc1", # phi2
|
"model.layers.{bid}.mlp.fc1",
|
||||||
"model.layers.{bid}.mlp.gate_up_proj", # phi3
|
"model.layers.{bid}.mlp.gate_up_proj",
|
||||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
"model.layers.layers.{bid}.mlp.up_proj",
|
||||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
"model.layers.{bid}.feed_forward.w3",
|
||||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
"encoder.layers.{bid}.mlp.fc11",
|
||||||
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
"model.layers.{bid}.mlp.c_fc",
|
||||||
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.gated_layers_v",
|
||||||
"model.layers.{bid}.residual_mlp.w3", # arctic
|
"model.layers.{bid}.residual_mlp.w3",
|
||||||
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
|
"encoder.layers.{bid}.mlp.dense_h_to_4h",
|
||||||
|
"transformer.h.{bid}.mlp.c_fc_1",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_UP_EXP: (
|
MODEL_TENSOR.FFN_UP_EXP: (
|
||||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
"layers.{bid}.feed_forward.experts.w3",
|
||||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
"transformer.decoder_layer.{bid}.moe.linear_v",
|
||||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
"transformer.blocks.{bid}.ffn.experts.mlp.v1",
|
||||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
|
"model.layers.{bid}.mlp.experts.up_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||||
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
"model.layers.{bid}.mlp.shared_expert.up_proj",
|
||||||
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
|
"model.layers.{bid}.mlp.shared_experts.up_proj",
|
||||||
),
|
),
|
||||||
# AWQ-activation gate
|
|
||||||
MODEL_TENSOR.FFN_ACT: ("transformer.blocks.{bid}.ffn.act",), # mpt
|
MODEL_TENSOR.FFN_ACT: (
|
||||||
# Feed-forward gate
|
"transformer.blocks.{bid}.ffn.act",
|
||||||
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE: (
|
MODEL_TENSOR.FFN_GATE: (
|
||||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
"model.layers.{bid}.mlp.gate_proj",
|
||||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
"layers.{bid}.feed_forward.w1",
|
||||||
"transformer.h.{bid}.mlp.w2", # qwen
|
"transformer.h.{bid}.mlp.w2",
|
||||||
"transformer.h.{bid}.mlp.c_fc2", # jais
|
"transformer.h.{bid}.mlp.c_fc2",
|
||||||
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
|
"model.layers.layers.{bid}.mlp.gate_proj",
|
||||||
"model.layers.{bid}.feed_forward.w1", # internlm2
|
"model.layers.{bid}.feed_forward.w1",
|
||||||
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
|
"encoder.layers.{bid}.mlp.fc12",
|
||||||
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.gated_layers_w",
|
||||||
"transformer.h.{bid}.mlp.linear_1", # refact
|
"transformer.h.{bid}.mlp.linear_1",
|
||||||
"model.layers.{bid}.residual_mlp.w1", # arctic
|
"model.layers.{bid}.residual_mlp.w1",
|
||||||
|
"transformer.h.{bid}.mlp.c_fc_0",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
"layers.{bid}.feed_forward.experts.w1",
|
||||||
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
"transformer.decoder_layer.{bid}.moe.linear",
|
||||||
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
"transformer.blocks.{bid}.ffn.experts.mlp.w1",
|
||||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
|
"model.layers.{bid}.mlp.experts.gate_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||||
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
|
"model.layers.{bid}.mlp.shared_expert.gate_proj",
|
||||||
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
|
"model.layers.{bid}.mlp.shared_experts.gate_proj",
|
||||||
),
|
),
|
||||||
# Feed-forward down
|
|
||||||
MODEL_TENSOR.FFN_DOWN: (
|
MODEL_TENSOR.FFN_DOWN: (
|
||||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h",
|
||||||
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
|
"transformer.h.{bid}.mlp.c_proj",
|
||||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
"transformer.blocks.{bid}.ffn.down_proj",
|
||||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
"transformer.h.{bid}.mlp.dense_4h_to_h",
|
||||||
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
"h.{bid}.mlp.dense_4h_to_h",
|
||||||
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
"model.layers.{bid}.mlp.down_proj",
|
||||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
"layers.{bid}.feed_forward.w2",
|
||||||
"encoder.layer.{bid}.output.dense", # bert
|
"encoder.layer.{bid}.output.dense",
|
||||||
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
"transformer.h.{bid}.mlp.fc_out",
|
||||||
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h",
|
||||||
"model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
"model.layers.{bid}.mlp.dense_4h_to_h",
|
||||||
"h.{bid}.mlp.c_proj", # gpt2
|
"h.{bid}.mlp.c_proj",
|
||||||
"transformer.h.{bid}.mlp.fc2", # phi2
|
"transformer.h.{bid}.mlp.fc2",
|
||||||
"model.layers.{bid}.mlp.fc2", # phi2
|
"model.layers.{bid}.mlp.fc2",
|
||||||
"model.layers.layers.{bid}.mlp.down_proj", # plamo
|
"model.layers.layers.{bid}.mlp.down_proj",
|
||||||
"model.layers.{bid}.feed_forward.w2", # internlm2
|
"model.layers.{bid}.feed_forward.w2",
|
||||||
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
"encoder.layers.{bid}.mlp.fc2",
|
||||||
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
"model.layers.{bid}.mlp.c_proj",
|
||||||
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.wo",
|
||||||
"transformer.layers.{bid}.ffn.proj_2", # openelm
|
"transformer.layers.{bid}.ffn.proj_2",
|
||||||
"model.layers.{bid}.residual_mlp.w2", # arctic
|
"model.layers.{bid}.residual_mlp.w2",
|
||||||
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.down_layer",
|
||||||
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
|
"encoder.layers.{bid}.mlp.dense_4h_to_h",
|
||||||
|
"model.layers.h.{bid}.mlp.c_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
"layers.{bid}.feed_forward.experts.w2",
|
||||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
"transformer.decoder_layer.{bid}.moe.linear_1",
|
||||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
"transformer.blocks.{bid}.ffn.experts.mlp.w2",
|
||||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
|
"model.layers.{bid}.mlp.experts.down_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||||
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
|
"model.layers.{bid}.mlp.shared_expert.down_proj",
|
||||||
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
|
"model.layers.{bid}.mlp.shared_experts.down_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
"model.layers.{bid}.self_attn.q_layernorm",
|
||||||
"model.layers.{bid}.self_attn.q_norm", # cohere
|
"model.layers.{bid}.self_attn.q_norm",
|
||||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
"transformer.blocks.{bid}.attn.q_ln",
|
||||||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
"encoder.layer.{bid}.attention.self.layer_norm_q",
|
||||||
"transformer.layers.{bid}.attn.q_norm", # openelm
|
"transformer.layers.{bid}.attn.q_norm",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_K_NORM: (
|
MODEL_TENSOR.ATTN_K_NORM: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
"model.layers.{bid}.self_attn.k_layernorm",
|
||||||
"model.layers.{bid}.self_attn.k_norm", # cohere
|
"model.layers.{bid}.self_attn.k_norm",
|
||||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
"transformer.blocks.{bid}.attn.k_ln",
|
||||||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
"encoder.layer.{bid}.attention.self.layer_norm_k",
|
||||||
"transformer.layers.{bid}.attn.k_norm", # openelm
|
"transformer.layers.{bid}.attn.k_norm",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ROPE_FREQS: (
|
MODEL_TENSOR.ROPE_FREQS: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.LAYER_OUT_NORM: (
|
MODEL_TENSOR.LAYER_OUT_NORM: (
|
||||||
"encoder.layer.{bid}.output.LayerNorm", # bert
|
"encoder.layer.{bid}.output.LayerNorm",
|
||||||
"encoder.layers.{bid}.norm2", # nomic-bert
|
"encoder.layers.{bid}.norm2",
|
||||||
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
|
"transformer.decoder_layer.{bid}.rms_norm_3",
|
||||||
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.layernorm",
|
||||||
"encoder.layer.{bid}.layer_norm_2", # jina-v2-code
|
"encoder.layer.{bid}.layer_norm_2"
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_IN: (
|
MODEL_TENSOR.SSM_IN: (
|
||||||
"model.layers.{bid}.in_proj",
|
"model.layers.{bid}.in_proj",
|
||||||
"backbone.layers.{bid}.mixer.in_proj",
|
"backbone.layers.{bid}.mixer.in_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_CONV1D: (
|
MODEL_TENSOR.SSM_CONV1D: (
|
||||||
"model.layers.{bid}.conv1d",
|
"model.layers.{bid}.conv1d",
|
||||||
"backbone.layers.{bid}.mixer.conv1d",
|
"backbone.layers.{bid}.mixer.conv1d",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_X: (
|
MODEL_TENSOR.SSM_X: (
|
||||||
"model.layers.{bid}.x_proj",
|
"model.layers.{bid}.x_proj",
|
||||||
"backbone.layers.{bid}.mixer.x_proj",
|
"backbone.layers.{bid}.mixer.x_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_DT: (
|
MODEL_TENSOR.SSM_DT: (
|
||||||
"model.layers.{bid}.dt_proj",
|
"model.layers.{bid}.dt_proj",
|
||||||
"backbone.layers.{bid}.mixer.dt_proj",
|
"backbone.layers.{bid}.mixer.dt_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_A: (
|
MODEL_TENSOR.SSM_A: (
|
||||||
"model.layers.{bid}.A_log",
|
"model.layers.{bid}.A_log",
|
||||||
"backbone.layers.{bid}.mixer.A_log",
|
"backbone.layers.{bid}.mixer.A_log",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_D: (
|
MODEL_TENSOR.SSM_D: (
|
||||||
"model.layers.{bid}.D",
|
"model.layers.{bid}.D",
|
||||||
"backbone.layers.{bid}.mixer.D",
|
"backbone.layers.{bid}.mixer.D",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_OUT: (
|
MODEL_TENSOR.SSM_OUT: (
|
||||||
"model.layers.{bid}.out_proj",
|
"model.layers.{bid}.out_proj",
|
||||||
"backbone.layers.{bid}.mixer.out_proj",
|
"backbone.layers.{bid}.mixer.out_proj",
|
||||||
),
|
),
|
||||||
MODEL_TENSOR.ATTN_Q_A: ("model.layers.{bid}.self_attn.q_a_proj",), # deepseek2
|
|
||||||
MODEL_TENSOR.ATTN_Q_B: ("model.layers.{bid}.self_attn.q_b_proj",), # deepseek2
|
MODEL_TENSOR.ATTN_Q_A: (
|
||||||
|
"model.layers.{bid}.self_attn.q_a_proj",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ATTN_Q_B: (
|
||||||
|
"model.layers.{bid}.self_attn.q_b_proj",
|
||||||
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_KV_A_MQA: (
|
MODEL_TENSOR.ATTN_KV_A_MQA: (
|
||||||
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
|
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_KV_B: (
|
MODEL_TENSOR.ATTN_KV_B: (
|
||||||
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
|
"model.layers.{bid}.self_attn.kv_b_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_Q_A_NORM: (
|
MODEL_TENSOR.ATTN_Q_A_NORM: (
|
||||||
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
|
"model.layers.{bid}.self_attn.q_a_layernorm",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_KV_A_NORM: (
|
MODEL_TENSOR.ATTN_KV_A_NORM: (
|
||||||
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
|
"model.layers.{bid}.self_attn.kv_a_layernorm",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_SUB_NORM: (
|
MODEL_TENSOR.ATTN_SUB_NORM: (
|
||||||
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
|
"model.layers.{bid}.self_attn.inner_attn_ln",
|
||||||
),
|
),
|
||||||
MODEL_TENSOR.FFN_SUB_NORM: ("model.layers.{bid}.mlp.ffn_layernorm",), # bitnet
|
|
||||||
MODEL_TENSOR.DEC_ATTN_NORM: ("decoder.block.{bid}.layer.0.layer_norm",), # t5
|
MODEL_TENSOR.FFN_SUB_NORM: (
|
||||||
MODEL_TENSOR.DEC_ATTN_Q: ("decoder.block.{bid}.layer.0.SelfAttention.q",), # t5
|
"model.layers.{bid}.mlp.ffn_layernorm",
|
||||||
MODEL_TENSOR.DEC_ATTN_K: ("decoder.block.{bid}.layer.0.SelfAttention.k",), # t5
|
),
|
||||||
MODEL_TENSOR.DEC_ATTN_V: ("decoder.block.{bid}.layer.0.SelfAttention.v",), # t5
|
|
||||||
|
MODEL_TENSOR.DEC_ATTN_NORM: (
|
||||||
|
"decoder.block.{bid}.layer.0.layer_norm",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.DEC_ATTN_Q: (
|
||||||
|
"decoder.block.{bid}.layer.0.SelfAttention.q",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.DEC_ATTN_K: (
|
||||||
|
"decoder.block.{bid}.layer.0.SelfAttention.k",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.DEC_ATTN_V: (
|
||||||
|
"decoder.block.{bid}.layer.0.SelfAttention.v",
|
||||||
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_ATTN_OUT: (
|
MODEL_TENSOR.DEC_ATTN_OUT: (
|
||||||
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5
|
"decoder.block.{bid}.layer.0.SelfAttention.o",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_ATTN_REL_B: (
|
MODEL_TENSOR.DEC_ATTN_REL_B: (
|
||||||
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
|
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
|
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
|
||||||
"decoder.block.{bid}.layer.1.layer_norm", # t5
|
"decoder.block.{bid}.layer.1.layer_norm",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
|
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
|
||||||
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
|
"decoder.block.{bid}.layer.1.EncDecAttention.q",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
|
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
|
||||||
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
|
"decoder.block.{bid}.layer.1.EncDecAttention.k",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
|
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
|
||||||
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
|
"decoder.block.{bid}.layer.1.EncDecAttention.v",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
|
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
|
||||||
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
|
"decoder.block.{bid}.layer.1.EncDecAttention.o",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
|
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
|
||||||
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
|
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias",
|
||||||
),
|
),
|
||||||
MODEL_TENSOR.DEC_FFN_NORM: ("decoder.block.{bid}.layer.2.layer_norm",), # t5
|
|
||||||
|
MODEL_TENSOR.DEC_FFN_NORM: (
|
||||||
|
"decoder.block.{bid}.layer.2.layer_norm",
|
||||||
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_FFN_GATE: (
|
MODEL_TENSOR.DEC_FFN_GATE: (
|
||||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
|
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_FFN_UP: (
|
MODEL_TENSOR.DEC_FFN_UP: (
|
||||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
|
"decoder.block.{bid}.layer.2.DenseReluDense.wi",
|
||||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
|
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.DEC_FFN_DOWN: (
|
MODEL_TENSOR.DEC_FFN_DOWN: (
|
||||||
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
|
"decoder.block.{bid}.layer.2.DenseReluDense.wo",
|
||||||
),
|
),
|
||||||
MODEL_TENSOR.DEC_OUTPUT_NORM: ("decoder.final_layer_norm",), # t5
|
|
||||||
MODEL_TENSOR.ENC_ATTN_NORM: ("encoder.block.{bid}.layer.0.layer_norm",), # t5
|
MODEL_TENSOR.DEC_OUTPUT_NORM: (
|
||||||
MODEL_TENSOR.ENC_ATTN_Q: ("encoder.block.{bid}.layer.0.SelfAttention.q",), # t5
|
"decoder.final_layer_norm",
|
||||||
MODEL_TENSOR.ENC_ATTN_K: ("encoder.block.{bid}.layer.0.SelfAttention.k",), # t5
|
),
|
||||||
MODEL_TENSOR.ENC_ATTN_V: ("encoder.block.{bid}.layer.0.SelfAttention.v",), # t5
|
|
||||||
|
MODEL_TENSOR.ENC_ATTN_NORM: (
|
||||||
|
"encoder.block.{bid}.layer.0.layer_norm",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ENC_ATTN_Q: (
|
||||||
|
"encoder.block.{bid}.layer.0.SelfAttention.q",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ENC_ATTN_K: (
|
||||||
|
"encoder.block.{bid}.layer.0.SelfAttention.k",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ENC_ATTN_V: (
|
||||||
|
"encoder.block.{bid}.layer.0.SelfAttention.v",
|
||||||
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ENC_ATTN_OUT: (
|
MODEL_TENSOR.ENC_ATTN_OUT: (
|
||||||
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5
|
"encoder.block.{bid}.layer.0.SelfAttention.o",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ENC_ATTN_REL_B: (
|
MODEL_TENSOR.ENC_ATTN_REL_B: (
|
||||||
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
|
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias",
|
||||||
),
|
),
|
||||||
MODEL_TENSOR.ENC_FFN_NORM: ("encoder.block.{bid}.layer.1.layer_norm",), # t5
|
|
||||||
|
MODEL_TENSOR.ENC_FFN_NORM: (
|
||||||
|
"encoder.block.{bid}.layer.1.layer_norm",
|
||||||
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ENC_FFN_GATE: (
|
MODEL_TENSOR.ENC_FFN_GATE: (
|
||||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
|
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ENC_FFN_UP: (
|
MODEL_TENSOR.ENC_FFN_UP: (
|
||||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
|
"encoder.block.{bid}.layer.1.DenseReluDense.wi",
|
||||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
|
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ENC_FFN_DOWN: (
|
MODEL_TENSOR.ENC_FFN_DOWN: (
|
||||||
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
|
"encoder.block.{bid}.layer.1.DenseReluDense.wo",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
||||||
|
"encoder.final_layer_norm",
|
||||||
),
|
),
|
||||||
MODEL_TENSOR.ENC_OUTPUT_NORM: ("encoder.final_layer_norm",), # t5
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# architecture-specific block mappings
|
|
||||||
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
|
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
|
||||||
MODEL_ARCH.ARCTIC: {
|
MODEL_ARCH.ARCTIC: {
|
||||||
MODEL_TENSOR.FFN_NORM: ("model.layers.{bid}.residual_layernorm",),
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
MODEL_TENSOR.FFN_NORM_EXP: ("model.layers.{bid}.post_attention_layernorm",),
|
"model.layers.{bid}.residual_layernorm",
|
||||||
|
),
|
||||||
|
MODEL_TENSOR.FFN_NORM_EXP: (
|
||||||
|
"model.layers.{bid}.post_attention_layernorm",
|
||||||
|
),
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -490,35 +588,31 @@ def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||||
if tensor not in MODEL_TENSORS[arch]:
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
tensor_name = TENSOR_NAMES[tensor].format(bid=bid)
|
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
for key in keys:
|
for key in keys:
|
||||||
key = key.format(bid=bid)
|
key = key.format(bid = bid)
|
||||||
self.mapping[key] = (tensor, tensor_name)
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
|
|
||||||
def get_type_and_name(
|
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||||
self, key: str, try_suffixes: Sequence[str] = ()
|
|
||||||
) -> tuple[MODEL_TENSOR, str] | None:
|
|
||||||
result = self.mapping.get(key)
|
result = self.mapping.get(key)
|
||||||
if result is not None:
|
if result is not None:
|
||||||
return result
|
return result
|
||||||
for suffix in try_suffixes:
|
for suffix in try_suffixes:
|
||||||
if key.endswith(suffix):
|
if key.endswith(suffix):
|
||||||
result = self.mapping.get(key[: -len(suffix)])
|
result = self.mapping.get(key[:-len(suffix)])
|
||||||
if result is not None:
|
if result is not None:
|
||||||
return result[0], result[1] + suffix
|
return result[0], result[1] + suffix
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
|
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
|
||||||
result = self.get_type_and_name(key, try_suffixes=try_suffixes)
|
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||||
if result is None:
|
if result is None:
|
||||||
return None
|
return None
|
||||||
return result[1]
|
return result[1]
|
||||||
|
|
||||||
def get_type(
|
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
|
||||||
self, key: str, try_suffixes: Sequence[str] = ()
|
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||||
) -> MODEL_TENSOR | None:
|
|
||||||
result = self.get_type_and_name(key, try_suffixes=try_suffixes)
|
|
||||||
if result is None:
|
if result is None:
|
||||||
return None
|
return None
|
||||||
return result[0]
|
return result[0]
|
||||||
|
@ -535,6 +629,5 @@ def __contains__(self, key: str) -> bool:
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
return repr(self.mapping)
|
return repr(self.mapping)
|
||||||
|
|
||||||
|
|
||||||
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
|
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
|
||||||
return TensorNameMap(arch, n_blocks)
|
return TensorNameMap(arch, n_blocks)
|
Loading…
Reference in New Issue