refactor(ggml): update safetensor conversion scripts

This commit is contained in:
BuildTools 2025-03-22 09:41:54 -07:00
parent c9c2b04534
commit b4817eee06
No known key found for this signature in database
GPG Key ID: 3270C066C15D530B
10 changed files with 1295 additions and 644 deletions

File diff suppressed because it is too large Load Diff

View File

@ -27,7 +27,6 @@
import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, Model
logger = logging.getLogger("lora-to-gguf")
@ -39,10 +38,9 @@ class PartialLoraTensor:
B: Tensor | None = None
# magic to support tensor shape modifications and splitting
class LoraTorchTensor:
_lora_A: Tensor # (n_rank, row_size)
_lora_B: Tensor # (col_size, n_rank)
_lora_A: Tensor
_lora_B: Tensor
_rank: int
def __init__(self, A: Tensor, B: Tensor):
@ -60,20 +58,14 @@ def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
def __getitem__(
self,
indices: (
SupportsIndex
| slice
| tuple[
SupportsIndex | slice | Tensor, ...
] # TODO: add ellipsis in the type signature
),
indices: SupportsIndex | slice | tuple[SupportsIndex | slice | Tensor, ...],
) -> LoraTorchTensor:
shape = self.shape
if isinstance(indices, SupportsIndex):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
raise NotImplementedError # can't return a vector
raise NotImplementedError
elif isinstance(indices, slice):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
@ -83,7 +75,7 @@ def __getitem__(
assert len(indices) > 0
if indices[-1] is Ellipsis:
return self[indices[:-1]]
# expand ellipsis
indices = tuple(
u
for v in (
@ -103,7 +95,6 @@ def __getitem__(
*(slice(None, None) for _ in range(len(indices), len(shape))),
)
# TODO: make sure this is correct
indices_A = (
*(
(
@ -119,7 +110,7 @@ def __getitem__(
indices_B = indices[:-1]
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
else:
raise NotImplementedError # unknown indice type
raise NotImplementedError
@property
def dtype(self) -> torch.dtype:
@ -142,9 +133,8 @@ def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
new_shape = cast(tuple[int, ...], shape)
orig_shape = self.shape
if len(new_shape) < 2:
raise NotImplementedError # can't become a vector
raise NotImplementedError
# expand -1 in the shape
if any(dim == -1 for dim in new_shape):
n_elems = prod(orig_shape)
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
@ -154,7 +144,7 @@ def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
)
if new_shape[-1] != orig_shape[-1]:
raise NotImplementedError # can't reshape the row size trivially
raise NotImplementedError
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
shape_B = (*new_shape[:-1], self._rank)
@ -173,7 +163,7 @@ def permute(self, *dims: int) -> LoraTorchTensor:
shape = self.shape
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
if dims[-1] == -1:
# TODO: support higher dimensional A shapes bigger than 1
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
@ -181,7 +171,7 @@ def permute(self, *dims: int) -> LoraTorchTensor:
self._lora_B.permute(*dims), self._lora_A.permute(*dims)
)
else:
# TODO: compose the above two
raise NotImplementedError
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
@ -200,7 +190,7 @@ def to(self, *args, **kwargs):
@classmethod
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
del types # unused
del types
if kwargs is None:
kwargs = {}
@ -241,7 +231,7 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
# models produced by mergekit-extract-lora have token embeddings in the adapter
base_name = base_name.replace(".lora_embedding_A", ".weight")
base_name = base_name.replace(".lora_embedding_B", ".weight")
return base_name
@ -303,7 +293,7 @@ def parse_args() -> argparse.Namespace:
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
# normally, adapter does not come with base model config, we need to load it from AutoConfig
config = AutoConfig.from_pretrained(hf_model_id)
return config.to_dict()
@ -331,11 +321,11 @@ def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_lora
if os.path.exists(input_model):
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
lora_model = load_file(input_model, device="cpu")
@ -343,11 +333,9 @@ def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
# load LoRA config
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
# load base model
if base_model_id is not None:
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
hparams = load_hparams_from_hf(base_model_id)
@ -409,7 +397,7 @@ def set_gguf_parameters(self):
)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
return ()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
@ -419,13 +407,13 @@ def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
# note: mergekit-extract-lora also adds token embeddings to the adapter
is_lora_a = ".lora_A.weight" in name or ".lora_embedding_A" in name
is_lora_b = ".lora_B.weight" in name or ".lora_embedding_B" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
# mergekit-extract-lora add these layernorm to the adapter, we need to keep them
if "_layernorm" in name or ".norm" in name:
yield (base_name, tensor)
continue
@ -437,7 +425,7 @@ def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
"Embeddings is present in the adapter. This can be due to new tokens added during fine tuning"
)
logger.error(
"Please refer to https://github.com/ggerganov/llama.cpp/pull/9948"
"Please refer to https://github.com/ggml-org/llama.cpp/pull/9948"
)
sys.exit(1)
@ -464,27 +452,21 @@ def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:
dest = list(super().modify_tensors(data_torch, name, bid))
# some archs may have the same tensor for lm_head and output (tie word embeddings)
# in this case, adapters targeting lm_head will fail when using llama-export-lora
# therefore, we ignore them for now
# see: https://github.com/ggerganov/llama.cpp/issues/9065
if name == "lm_head.weight" and len(dest) == 0:
raise ValueError(
"lm_head is present in adapter, but is ignored in base model"
)
for dest_name, dest_data in dest:
# mergekit-extract-lora add these layernorm to the adapter
if "_norm" in dest_name:
assert dest_data.dim() == 1
yield (dest_name, dest_data)
continue
# otherwise, we must get the lora_A and lora_B tensors
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()
# note: mergekit-extract-lora flip and transpose A and B
# here we only need to transpose token_embd.lora_a, see llm_build_inp_embd()
if "token_embd.weight" in dest_name:
lora_a = lora_a.T

View File

@ -119,6 +119,7 @@ class LLM:
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
RESIDUAL_SCALE = "{arch}.residual_scale"
EMBEDDING_SCALE = "{arch}.embedding_scale"
TOKEN_SHIFT_COUNT = "{arch}.token_shift_count"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@ -134,6 +135,10 @@ class Attention:
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
DECAY_LORA_RANK = "{arch}.attention.decay_lora_rank"
ICLR_LORA_RANK = "{arch}.attention.iclr_lora_rank"
VALUE_RESIDUAL_MIX_LORA_RANK = "{arch}.attention.value_residual_mix_lora_rank"
GATE_LORA_RANK = "{arch}.attention.gate_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
SCALE = "{arch}.attention.scale"
@ -189,7 +194,6 @@ class Tokenizer:
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
CLS_ID = "tokenizer.ggml.cls_token_id"
MASK_ID = "tokenizer.ggml.mask_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
@ -251,6 +255,7 @@ class MODEL_ARCH(IntEnum):
QWEN2VL = auto()
PHI2 = auto()
PHI3 = auto()
PHIMOE = auto()
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
@ -259,8 +264,12 @@ class MODEL_ARCH(IntEnum):
MINICPM3 = auto()
GEMMA = auto()
GEMMA2 = auto()
GEMMA3 = auto()
STARCODER2 = auto()
RWKV6 = auto()
RWKV6QWEN2 = auto()
RWKV7 = auto()
ARWKV7 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
@ -333,13 +342,26 @@ class MODEL_TENSOR(IntEnum):
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
TIME_MIX_W0 = auto()
TIME_MIX_W1 = auto()
TIME_MIX_W2 = auto()
TIME_MIX_A0 = auto()
TIME_MIX_A1 = auto()
TIME_MIX_A2 = auto()
TIME_MIX_V0 = auto()
TIME_MIX_V1 = auto()
TIME_MIX_V2 = auto()
TIME_MIX_G1 = auto()
TIME_MIX_G2 = auto()
TIME_MIX_K_K = auto()
TIME_MIX_K_A = auto()
TIME_MIX_R_K = auto()
TIME_MIX_LERP_X = auto()
TIME_MIX_LERP_K = auto()
TIME_MIX_LERP_V = auto()
TIME_MIX_LERP_R = auto()
TIME_MIX_LERP_G = auto()
TIME_MIX_LERP_FUSED = auto()
TIME_MIX_LERP_W = auto()
TIME_MIX_FIRST = auto()
TIME_MIX_DECAY = auto()
@ -435,6 +457,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.QWEN2VL: "qwen2vl",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PHIMOE: "phimoe",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
@ -443,8 +466,12 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.MINICPM3: "minicpm3",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.GEMMA3: "gemma3",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.RWKV6QWEN2: "rwkv6qwen2",
MODEL_ARCH.RWKV7: "rwkv7",
MODEL_ARCH.ARWKV7: "arwkv7",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
@ -517,13 +544,26 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0",
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
MODEL_TENSOR.TIME_MIX_A0: "blk.{bid}.time_mix_a0",
MODEL_TENSOR.TIME_MIX_A1: "blk.{bid}.time_mix_a1",
MODEL_TENSOR.TIME_MIX_A2: "blk.{bid}.time_mix_a2",
MODEL_TENSOR.TIME_MIX_V0: "blk.{bid}.time_mix_v0",
MODEL_TENSOR.TIME_MIX_V1: "blk.{bid}.time_mix_v1",
MODEL_TENSOR.TIME_MIX_V2: "blk.{bid}.time_mix_v2",
MODEL_TENSOR.TIME_MIX_G1: "blk.{bid}.time_mix_g1",
MODEL_TENSOR.TIME_MIX_G2: "blk.{bid}.time_mix_g2",
MODEL_TENSOR.TIME_MIX_K_K: "blk.{bid}.time_mix_k_k",
MODEL_TENSOR.TIME_MIX_K_A: "blk.{bid}.time_mix_k_a",
MODEL_TENSOR.TIME_MIX_R_K: "blk.{bid}.time_mix_r_k",
MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
MODEL_TENSOR.TIME_MIX_LERP_FUSED: "blk.{bid}.time_mix_lerp_fused",
MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
@ -947,6 +987,24 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PHIMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.CODESHELL: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
@ -1060,6 +1118,23 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.FFN_PRE_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.GEMMA3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_PRE_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -1090,6 +1165,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.TIME_MIX_LERP_R,
MODEL_TENSOR.TIME_MIX_LERP_G,
MODEL_TENSOR.TIME_MIX_LERP_W,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_FIRST,
MODEL_TENSOR.TIME_MIX_DECAY,
MODEL_TENSOR.TIME_MIX_DECAY_W1,
@ -1106,6 +1182,97 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
MODEL_TENSOR.CHANNEL_MIX_VALUE,
],
MODEL_ARCH.RWKV6QWEN2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_LERP_X,
MODEL_TENSOR.TIME_MIX_LERP_K,
MODEL_TENSOR.TIME_MIX_LERP_V,
MODEL_TENSOR.TIME_MIX_LERP_R,
MODEL_TENSOR.TIME_MIX_LERP_G,
MODEL_TENSOR.TIME_MIX_LERP_W,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_FIRST,
MODEL_TENSOR.TIME_MIX_DECAY,
MODEL_TENSOR.TIME_MIX_DECAY_W1,
MODEL_TENSOR.TIME_MIX_DECAY_W2,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_GATE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.RWKV7: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_W0,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_A0,
MODEL_TENSOR.TIME_MIX_A1,
MODEL_TENSOR.TIME_MIX_A2,
MODEL_TENSOR.TIME_MIX_V0,
MODEL_TENSOR.TIME_MIX_V1,
MODEL_TENSOR.TIME_MIX_V2,
MODEL_TENSOR.TIME_MIX_G1,
MODEL_TENSOR.TIME_MIX_G2,
MODEL_TENSOR.TIME_MIX_K_K,
MODEL_TENSOR.TIME_MIX_K_A,
MODEL_TENSOR.TIME_MIX_R_K,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.CHANNEL_MIX_LERP_K,
MODEL_TENSOR.CHANNEL_MIX_KEY,
MODEL_TENSOR.CHANNEL_MIX_VALUE,
],
MODEL_ARCH.ARWKV7: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_W0,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_A0,
MODEL_TENSOR.TIME_MIX_A1,
MODEL_TENSOR.TIME_MIX_A2,
MODEL_TENSOR.TIME_MIX_V0,
MODEL_TENSOR.TIME_MIX_V1,
MODEL_TENSOR.TIME_MIX_V2,
MODEL_TENSOR.TIME_MIX_G1,
MODEL_TENSOR.TIME_MIX_G2,
MODEL_TENSOR.TIME_MIX_K_K,
MODEL_TENSOR.TIME_MIX_K_A,
MODEL_TENSOR.TIME_MIX_R_K,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -1310,6 +1477,9 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
@ -1789,7 +1959,6 @@ def get_type(val: Any) -> GGUFValueType:
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV

15
src/gguf/gguf.py Normal file
View File

@ -0,0 +1,15 @@
# This file left for compatibility. If you want to use the GGUF API from Python
# then don't import gguf/gguf.py directly. If you're looking for examples, see the
# examples/ directory for gguf-py
import importlib
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent.parent))
# Compatibility for people trying to import gguf/gguf.py directly instead of as a package.
importlib.invalidate_caches()
import gguf # noqa: E402
importlib.reload(gguf)

View File

@ -6,6 +6,7 @@
import logging
import os
import sys
from collections import OrderedDict
from typing import Any, Literal, NamedTuple, TypeVar, Union
@ -15,7 +16,6 @@
from .quants import quant_shape_to_byte_shape
if __name__ == "__main__":
import sys
from pathlib import Path
# Allow running file in package as a script.
@ -28,6 +28,7 @@
GGUF_VERSION,
GGMLQuantizationType,
GGUFValueType,
GGUFEndian,
)
logger = logging.getLogger(__name__)
@ -53,6 +54,52 @@ class ReaderField(NamedTuple):
types: list[GGUFValueType] = []
def contents(self, index_or_slice: int | slice = slice(None)) -> Any:
if self.types:
to_string = lambda x: str(x.tobytes(), encoding="utf-8") # noqa: E731
main_type = self.types[0]
if main_type == GGUFValueType.ARRAY:
sub_type = self.types[-1]
if sub_type == GGUFValueType.STRING:
indices = self.data[index_or_slice]
if isinstance(index_or_slice, int):
return to_string(self.parts[indices]) # type: ignore
else:
return [to_string(self.parts[idx]) for idx in indices] # type: ignore
else:
# FIXME: When/if _get_field_parts() support multi-dimensional arrays, this must do so too
# Check if it's unsafe to perform slice optimization on data
# if any(True for idx in self.data if len(self.parts[idx]) != 1):
# optim_slice = slice(None)
# else:
# optim_slice = index_or_slice
# index_or_slice = slice(None)
# if isinstance(optim_slice, int):
# return self.parts[self.data[optim_slice]].tolist()[0]
# else:
# return [pv for idx in self.data[optim_slice] for pv in self.parts[idx].tolist()][index_or_slice]
if isinstance(index_or_slice, int):
return self.parts[self.data[index_or_slice]].tolist()[0]
else:
return [
pv
for idx in self.data[index_or_slice]
for pv in self.parts[idx].tolist()
]
if main_type == GGUFValueType.STRING:
return to_string(self.parts[-1])
else:
return self.parts[-1].tolist()[0]
return None
class ReaderTensor(NamedTuple):
name: str
@ -103,12 +150,23 @@ def __init__(
# If we get 0 here that means it's (probably) a GGUF file created for
# the opposite byte order of the machine this script is running on.
self.byte_order = "S"
temp_version = temp_version.newbyteorder(self.byte_order)
temp_version = temp_version.view(
temp_version.dtype.newbyteorder(self.byte_order)
)
version = temp_version[0]
if version not in READER_SUPPORTED_VERSIONS:
raise ValueError(
f"Sorry, file appears to be version {version} which we cannot handle"
)
if sys.byteorder == "little":
# Host is little endian
host_endian = GGUFEndian.LITTLE
swapped_endian = GGUFEndian.BIG
else:
# Sorry PDP or other weird systems that don't use BE or LE.
host_endian = GGUFEndian.BIG
swapped_endian = GGUFEndian.LITTLE
self.endianess = swapped_endian if self.byte_order == "S" else host_endian
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
self.tensors: list[ReaderTensor] = []
offs += self._push_field(
@ -170,9 +228,11 @@ def _get(
itemsize = int(np.empty([], dtype=dtype).itemsize)
end_offs = offset + itemsize * count
arr = self.data[offset:end_offs].view(dtype=dtype)[:count]
if override_order is None:
return arr
return arr.view(arr.dtype.newbyteorder(override_order))
return arr.view(
arr.dtype.newbyteorder(
self.byte_order if override_order is None else override_order
)
)
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
if field.name in self.fields:
@ -218,6 +278,7 @@ def _get_field_parts(
offs += int(alen.nbytes)
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
data_idxs: list[int] = []
# FIXME: Handle multi-dimensional arrays properly instead of flattening
for idx in range(alen[0]):
curr_size, curr_parts, curr_idxs, curr_types = self._get_field_parts(
offs, raw_itype[0]

View File

@ -828,6 +828,9 @@ def add_embedding_scale(self, value: float) -> None:
def add_wkv_head_size(self, size: int) -> None:
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
def add_token_shift_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.TOKEN_SHIFT_COUNT.format(arch=self.arch), count)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
@ -849,6 +852,20 @@ def add_q_lora_rank(self, length: int) -> None:
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_decay_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.DECAY_LORA_RANK.format(arch=self.arch), length)
def add_iclr_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.ICLR_LORA_RANK.format(arch=self.arch), length)
def add_value_residual_mix_lora_rank(self, length: int) -> None:
self.add_uint32(
Keys.Attention.VALUE_RESIDUAL_MIX_LORA_RANK.format(arch=self.arch), length
)
def add_gate_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.GATE_LORA_RANK.format(arch=self.arch), length)
def add_relative_attn_buckets_count(self, value: int) -> None:
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
@ -943,9 +960,6 @@ def add_sep_token_id(self, id: int) -> None:
def add_pad_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
def add_cls_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.CLS_ID, id)
def add_mask_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.MASK_ID, id)

View File

@ -160,21 +160,41 @@ def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
if not model_card_path.is_file():
return {}
# The model card metadata is assumed to always be in YAML
# The model card metadata is assumed to always be in YAML (frontmatter)
# ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
yaml_content: str = ""
with open(model_card_path, "r", encoding="utf-8") as f:
if f.readline() == "---\n":
raw = f.read().partition("---\n")[0]
data = yaml.safe_load(raw)
if isinstance(data, dict):
return data
else:
logger.error(
f"while reading YAML model card frontmatter, data is {type(data)} instead of dict"
)
return {}
else:
content = f.read()
lines = content.splitlines()
lines_yaml = []
if len(lines) == 0:
# Empty file
return {}
if len(lines) > 0 and lines[0] != "---":
# No frontmatter
return {}
for line in lines[1:]:
if line == "---":
break # End of frontmatter
else:
lines_yaml.append(line)
yaml_content = "\n".join(lines_yaml) + "\n"
# Quick hack to fix the Norway problem
# https://hitchdev.com/strictyaml/why/implicit-typing-removed/
yaml_content = yaml_content.replace("- no\n", '- "no"\n')
if yaml_content:
data = yaml.safe_load(yaml_content)
if isinstance(data, dict):
return data
else:
logger.error(
f"while reading YAML model card frontmatter, data is {type(data)} instead of dict"
)
return {}
else:
return {}
@staticmethod
def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:

View File

@ -13,7 +13,7 @@ class TensorNameMap:
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf nemotron olmoe olmo2
"model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon
@ -27,7 +27,8 @@ class TensorNameMap:
"embedding.word_embeddings", # chatglm
"transformer.token_embeddings", # openelm
"shared", # t5
"rwkv.embeddings", # rwkv
"rwkv.embeddings", # rwkv6
"model.embeddings", # rwkv7
),
# Token type embeddings
MODEL_TENSOR.TOKEN_TYPES: (
@ -40,6 +41,9 @@ class TensorNameMap:
"emb_ln", # nomic-bert
"transformer.norm", # openelm
"rwkv.blocks.0.pre_ln", # rwkv
"rwkv.blocks.0.pre_ln", # rwkv6
"model.pre_ln", # rwkv7
"model.layers.0.pre_norm", # rwkv7
"backbone.norm", # wavtokenizer
),
# Position embeddings
@ -51,7 +55,7 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
@ -63,7 +67,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
"model.norm", # llama-hf baichuan internlm2 olmoe olmo2
"model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
"norm", # llama-pth
"transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2
@ -76,7 +80,8 @@ class TensorNameMap:
"encoder.final_layernorm", # chatglm
"transformer.norm", # openelm
"model.norm", # nemotron
"rwkv.ln_out", # rwkv
"rwkv.ln_out", # rwkv6
"model.ln_out", # rwkv7
"backbone.final_layer_norm", # wavtokenizer
),
# Rope frequencies
@ -98,7 +103,7 @@ class TensorNameMap:
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
"transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
"layers.{bid}.attention_norm", # llama-pth
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
@ -112,13 +117,15 @@ class TensorNameMap:
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"encoder.layers.{bid}.input_layernorm", # chatglm
"transformer.layers.{bid}.attn_norm", # openelm
"rwkv.blocks.{bid}.ln1", # rwkv
"rwkv.blocks.{bid}.ln1", # rwkv6
"model.layers.{bid}.ln1", # rwkv7
),
# Attention norm 2
MODEL_TENSOR.ATTN_NORM_2: (
"transformer.h.{bid}.ln_attn", # falcon40b
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code
"rwkv.blocks.{bid}.ln2", # rwkv
"rwkv.blocks.{bid}.ln2", # rwkv6
"model.layers.{bid}.ln2", # rwkv7
),
# Attention query-key-value
MODEL_TENSOR.ATTN_QKV: (
@ -139,7 +146,7 @@ class TensorNameMap:
),
# Attention query
MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
@ -151,7 +158,7 @@ class TensorNameMap:
),
# Attention key
MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
@ -164,7 +171,7 @@ class TensorNameMap:
),
# Attention value
MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
@ -181,7 +188,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.linear_attn", # deci
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
@ -222,7 +229,7 @@ class TensorNameMap:
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
"layers.{bid}.ffn_norm", # llama-pth
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi
@ -242,7 +249,7 @@ class TensorNameMap:
),
MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
@ -287,6 +294,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
),
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
@ -313,6 +321,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
@ -351,6 +360,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
@ -410,62 +420,116 @@ class TensorNameMap:
"model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj",
),
MODEL_TENSOR.TIME_MIX_W0: ("model.layers.{bid}.attention.w0",), # rwkv7
MODEL_TENSOR.TIME_MIX_W1: (
"rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
"model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
"model.layers.{bid}.attention.w1", # rwkv7
),
MODEL_TENSOR.TIME_MIX_W2: (
"rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
"model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
"model.layers.{bid}.attention.w2", # rwkv7
),
MODEL_TENSOR.TIME_MIX_A0: ("model.layers.{bid}.attention.a0",), # rwkv7
MODEL_TENSOR.TIME_MIX_A1: ("model.layers.{bid}.attention.a1",), # rwkv7
MODEL_TENSOR.TIME_MIX_A2: ("model.layers.{bid}.attention.a2",), # rwkv7
MODEL_TENSOR.TIME_MIX_V0: ("model.layers.{bid}.attention.v0",), # rwkv7
MODEL_TENSOR.TIME_MIX_V1: ("model.layers.{bid}.attention.v1",), # rwkv7
MODEL_TENSOR.TIME_MIX_V2: ("model.layers.{bid}.attention.v2",), # rwkv7
MODEL_TENSOR.TIME_MIX_G1: ("model.layers.{bid}.attention.g1",), # rwkv7
MODEL_TENSOR.TIME_MIX_G2: ("model.layers.{bid}.attention.g2",), # rwkv7
MODEL_TENSOR.TIME_MIX_K_K: ("model.layers.{bid}.attention.k_k",), # rwkv7
MODEL_TENSOR.TIME_MIX_K_A: ("model.layers.{bid}.attention.k_a",), # rwkv7
MODEL_TENSOR.TIME_MIX_R_K: ("model.layers.{bid}.attention.r_k",), # rwkv7
MODEL_TENSOR.TIME_MIX_LERP_X: (
"rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
"model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_K: (
"rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
"model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_V: (
"rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
"model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_R: (
"rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
"model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_G: (
"rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
"model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_W: (
"rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
"rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
"model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_FIRST: (
"rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
"rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
),
MODEL_TENSOR.TIME_MIX_DECAY: (
"rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
"rwkv.blocks.{bid}.attention.time_decay", # rwkv6
"model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_DECAY_W1: (
"rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
"rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
"model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_DECAY_W2: (
"rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
"rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
"model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_KEY: (
"rwkv.blocks.{bid}.attention.key", # rwkv6
"model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
"model.layers.{bid}.attention.key", # rwkv7
"model.layers.{bid}.attention.k_proj", # rwkv7
),
MODEL_TENSOR.TIME_MIX_VALUE: (
"rwkv.blocks.{bid}.attention.value", # rwkv6
"model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
"model.layers.{bid}.attention.value", # rwkv7
"model.layers.{bid}.attention.v_proj", # rwkv7
),
MODEL_TENSOR.TIME_MIX_KEY: ("rwkv.blocks.{bid}.attention.key",), # rwkv
MODEL_TENSOR.TIME_MIX_VALUE: ("rwkv.blocks.{bid}.attention.value",), # rwkv
MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
"rwkv.blocks.{bid}.attention.receptance", # rwkv
"rwkv.blocks.{bid}.attention.receptance", # rwkv6
"model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
"model.layers.{bid}.attention.receptance", # rwkv7
"model.layers.{bid}.attention.r_proj", # rwkv7
),
MODEL_TENSOR.TIME_MIX_GATE: (
"rwkv.blocks.{bid}.attention.gate", # rwkv6
"model.layers.{bid}.self_attn.gate", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LN: (
"rwkv.blocks.{bid}.attention.ln_x", # rwkv6
"model.layers.{bid}.attention.ln_x", # rwkv7
),
MODEL_TENSOR.TIME_MIX_OUTPUT: (
"rwkv.blocks.{bid}.attention.output", # rwkv6
"model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
"model.layers.{bid}.attention.output", # rwkv7
"model.layers.{bid}.attention.o_proj", # rwkv7
),
MODEL_TENSOR.TIME_MIX_GATE: ("rwkv.blocks.{bid}.attention.gate",), # rwkv
MODEL_TENSOR.TIME_MIX_LN: ("rwkv.blocks.{bid}.attention.ln_x",), # rwkv
MODEL_TENSOR.TIME_MIX_OUTPUT: ("rwkv.blocks.{bid}.attention.output",), # rwkv
MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
"rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
"rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
"model.layers.{bid}.feed_forward.x_k", # rwkv7
),
MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
"rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
"rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
),
MODEL_TENSOR.CHANNEL_MIX_KEY: (
"rwkv.blocks.{bid}.feed_forward.key", # rwkv6
"model.layers.{bid}.feed_forward.key", # rwkv7
),
MODEL_TENSOR.CHANNEL_MIX_KEY: ("rwkv.blocks.{bid}.feed_forward.key",), # rwkv
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
"rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
"rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
),
MODEL_TENSOR.CHANNEL_MIX_VALUE: (
"rwkv.blocks.{bid}.feed_forward.value", # rwkv
"rwkv.blocks.{bid}.feed_forward.value", # rwkv6
"model.layers.{bid}.feed_forward.value", # rwkv7
),
MODEL_TENSOR.ATTN_Q_A: ("model.layers.{bid}.self_attn.q_a_proj",), # deepseek2
MODEL_TENSOR.ATTN_Q_B: ("model.layers.{bid}.self_attn.q_b_proj",), # deepseek2

View File

@ -67,7 +67,7 @@ def naming_convention(
output_type: str | None,
model_type: Literal["vocab", "LoRA"] | None = None,
) -> str:
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
# Reference: https://github.com/ggml-org/ggml/blob/master/docs/gguf.md#gguf-naming-convention
if base_name is not None:
name = base_name.strip().replace(" ", "-").replace("/", "-")

View File

@ -166,7 +166,7 @@ def _try_load_from_tokenizer_json(self, path: Path) -> bool:
and isinstance(merges[0][0], str)
):
# New format since transformers 4.45 to support spaces in merges
# ref: https://github.com/ggerganov/llama.cpp/issues/9692
# ref: https://github.com/ggml-org/llama.cpp/issues/9692
# TODO: internally store as the new format instead of converting to old
if any(" " in s for pair in merges for s in pair):
logger.warning(
@ -195,7 +195,12 @@ def _try_load_from_tokenizer_json(self, path: Path) -> bool:
return True
with open(tokenizer_config_file, encoding="utf-8") as f:
tokenizer_config = json.load(f)
chat_template = tokenizer_config.get("chat_template")
chat_template_alt = None
chat_template_file = path / "chat_template.json"
if chat_template_file.is_file():
with open(chat_template_file, encoding="utf-8") as f:
chat_template_alt = json.load(f).get("chat_template")
chat_template = tokenizer_config.get("chat_template", chat_template_alt)
if chat_template is None or isinstance(chat_template, (str, list)):
self.chat_template = chat_template
else: