AutoGGUF/src/Localizations.py

6723 lines
389 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import re
AUTOGGUF_VERSION = "v1.8.1"
class _Localization:
def __init__(self):
pass
class _English(_Localization):
def __init__(self):
super().__init__()
# General UI
self.WINDOW_TITLE = "AutoGGUF (automated GGUF model quantizer)"
self.RAM_USAGE = "RAM Usage:"
self.CPU_USAGE = "CPU Usage:"
self.BACKEND = "Llama.cpp Backend:"
self.REFRESH_BACKENDS = "Refresh Backends"
self.MODELS_PATH = "Models Path:"
self.OUTPUT_PATH = "Output Path:"
self.LOGS_PATH = "Logs Path:"
self.BROWSE = "Browse"
self.AVAILABLE_MODELS = "Available Models:"
self.REFRESH_MODELS = "Refresh Models"
self.STARTUP_ELASPED_TIME = "Initialization took {0} ms"
# Usage Graphs
self.CPU_USAGE_OVER_TIME = "CPU Usage Over Time"
self.RAM_USAGE_OVER_TIME = "RAM Usage Over Time"
# Environment variables
self.DOTENV_FILE_NOT_FOUND = ".env file not found."
self.COULD_NOT_PARSE_LINE = "Could not parse line: {0}"
self.ERROR_LOADING_DOTENV = "Error loading .env: {0}"
# Model Import
self.IMPORT_MODEL = "Import Model"
self.SELECT_MODEL_TO_IMPORT = "Select Model to Import"
self.CONFIRM_IMPORT = "Confirm Import"
self.IMPORT_MODEL_CONFIRMATION = "Do you want to import the model {}?"
self.MODEL_IMPORTED_SUCCESSFULLY = "Model {} imported successfully"
self.IMPORTING_MODEL = "Importing model"
self.IMPORTED_MODEL_TOOLTIP = "Imported model: {}"
# AutoFP8 Quantization
self.AUTOFP8_QUANTIZATION_TASK_STARTED = "AutoFP8 quantization task started"
self.ERROR_STARTING_AUTOFP8_QUANTIZATION = "Error starting AutoFP8 quantization"
self.QUANTIZING_WITH_AUTOFP8 = "Quantizing {0} with AutoFP8"
self.QUANTIZING_TO_WITH_AUTOFP8 = "Quantizing {0} to {1}"
self.QUANTIZE_TO_FP8_DYNAMIC = "Quantize to FP8 Dynamic"
self.OPEN_MODEL_FOLDER = "Open Model Folder"
self.QUANTIZE = "Quantize"
self.OPEN_MODEL_FOLDER = "Open Model Folder"
self.INPUT_MODEL = "Input Model:"
# GGUF Verification
self.INVALID_GGUF_FILE = "Invalid GGUF file: {}"
self.SHARDED_MODEL_NAME = "{} (Sharded)"
self.IMPORTED_MODEL_TOOLTIP = "Imported model: {}"
self.CONCATENATED_FILE_WARNING = "This is a concatenated file part. It will not work with llama-quantize; please concat the file first."
self.CONCATENATED_FILES_FOUND = (
"Found {} concatenated file parts. Please concat the files first."
)
# Plugins
self.PLUGINS_DIR_NOT_EXIST = (
"Plugins directory '{}' does not exist. No plugins will be loaded."
)
self.PLUGINS_DIR_NOT_DIRECTORY = (
"'{}' exists but is not a directory. No plugins will be loaded."
)
self.PLUGIN_LOADED = "Loaded plugin: {} {}"
self.PLUGIN_INCOMPATIBLE = "Plugin {} {} is not compatible with AutoGGUF version {}. Supported versions: {}"
self.PLUGIN_LOAD_FAILED = "Failed to load plugin {}: {}"
self.NO_PLUGINS_LOADED = "No plugins loaded."
# GPU Monitoring
self.GPU_USAGE = "GPU Usage:"
self.GPU_USAGE_FORMAT = "GPU: {:.1f}% | VRAM: {:.1f}% ({} MB / {} MB)"
self.GPU_DETAILS = "GPU Details"
self.GPU_USAGE_OVER_TIME = "GPU Usage Over Time"
self.VRAM_USAGE_OVER_TIME = "VRAM Usage Over Time"
self.PERCENTAGE = "Percentage"
self.TIME = "Time (s)"
self.NO_GPU_DETECTED = "No GPU detected"
self.SELECT_GPU = "Select GPU"
self.AMD_GPU_NOT_SUPPORTED = "AMD GPU detected, but not supported"
# Quantization
self.QUANTIZATION_TYPE = "Quantization Type:"
self.ALLOW_REQUANTIZE = "Allow Requantize"
self.LEAVE_OUTPUT_TENSOR = "Leave Output Tensor"
self.PURE = "Pure"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Include Weights:"
self.EXCLUDE_WEIGHTS = "Exclude Weights:"
self.USE_OUTPUT_TENSOR_TYPE = "Use Output Tensor Type"
self.USE_TOKEN_EMBEDDING_TYPE = "Use Token Embedding Type"
self.KEEP_SPLIT = "Keep Split"
self.KV_OVERRIDES = "KV Overrides:"
self.ADD_NEW_OVERRIDE = "Add new override"
self.QUANTIZE_MODEL = "Quantize Model"
self.EXTRA_ARGUMENTS = "Extra Arguments:"
self.EXTRA_ARGUMENTS_LABEL = "Additional command-line arguments"
self.QUANTIZATION_COMMAND = "Quantization command"
# Presets
self.SAVE_PRESET = "Save Preset"
self.LOAD_PRESET = "Load Preset"
# Tasks
self.TASKS = "Tasks:"
# llama.cpp Download
self.DOWNLOAD_LLAMACPP = "Download llama.cpp"
self.SELECT_RELEASE = "Select Release:"
self.SELECT_ASSET = "Select Asset:"
self.EXTRACT_CUDA_FILES = "Extract CUDA files"
self.SELECT_CUDA_BACKEND = "Select CUDA Backend:"
self.DOWNLOAD = "Download"
self.REFRESH_RELEASES = "Refresh Releases"
# IMatrix Generation
self.IMATRIX_GENERATION = "IMatrix Generation"
self.DATA_FILE = "Data File:"
self.MODEL = "Model:"
self.OUTPUT = "Output:"
self.OUTPUT_FREQUENCY = "Output Frequency:"
self.GPU_OFFLOAD = "GPU Offload:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Generate IMatrix"
self.CONTEXT_SIZE = "Context Size:"
self.CONTEXT_SIZE_FOR_IMATRIX = "Context size for IMatrix generation"
self.THREADS = "Threads:"
self.NUMBER_OF_THREADS_FOR_IMATRIX = "Number of threads for IMatrix generation"
self.IMATRIX_GENERATION_COMMAND = "IMatrix generation command"
# LoRA Conversion
self.LORA_CONVERSION = "LoRA Conversion"
self.LORA_INPUT_PATH = "LoRA Input Path"
self.LORA_OUTPUT_PATH = "LoRA Output Path"
self.SELECT_LORA_INPUT_DIRECTORY = "Select LoRA Input Directory"
self.SELECT_LORA_OUTPUT_FILE = "Select LoRA Output File"
self.CONVERT_LORA = "Convert LoRA"
self.LORA_CONVERSION_COMMAND = "LoRA conversion command"
# LoRA Export
self.EXPORT_LORA = "Export LoRA"
self.GGML_LORA_ADAPTERS = "GGML LoRA Adapters"
self.SELECT_LORA_ADAPTER_FILES = "Select LoRA Adapter Files"
self.ADD_ADAPTER = "Add Adapter"
self.DELETE_ADAPTER = "Delete"
self.LORA_SCALE = "LoRA Scale"
self.ENTER_LORA_SCALE_VALUE = "Enter LoRA Scale Value (Optional)"
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = "Number of Threads for LoRA Export"
self.LORA_EXPORT_COMMAND = "LoRA export command"
# HuggingFace to GGUF Conversion
self.HF_TO_GGUF_CONVERSION = "HuggingFace to GGUF Conversion"
self.MODEL_DIRECTORY = "Model Directory:"
self.OUTPUT_FILE = "Output File:"
self.OUTPUT_TYPE = "Output Type:"
self.VOCAB_ONLY = "Vocab Only"
self.USE_TEMP_FILE = "Use Temp File"
self.NO_LAZY_EVALUATION = "No Lazy Evaluation"
self.MODEL_NAME = "Model Name:"
self.VERBOSE = "Verbose"
self.SPLIT_MAX_SIZE = "Split Max Size:"
self.DRY_RUN = "Dry Run"
self.CONVERT_HF_TO_GGUF = "Convert HF to GGUF"
self.SELECT_HF_MODEL_DIRECTORY = "Select HuggingFace Model Directory"
self.BROWSE_FOR_HF_MODEL_DIRECTORY = "Browsing for HuggingFace model directory"
self.BROWSE_FOR_HF_TO_GGUF_OUTPUT = (
"Browsing for HuggingFace to GGUF output file"
)
# Update Checking
self.UPDATE_AVAILABLE = "Update Avaliable"
self.NEW_VERSION_AVAILABLE = "A new version is avaliable: {}"
self.DOWNLOAD_NEW_VERSION = "Download?"
self.ERROR_CHECKING_FOR_UPDATES = "Error checking for updates:"
self.CHECKING_FOR_UPDATES = "Checking for updates"
# General Messages
self.ERROR = "Error"
self.WARNING = "Warning"
self.PROPERTIES = "Properties"
self.CANCEL = "Cancel"
self.RESTART = "Restart"
self.DELETE = "Delete"
self.RENAME = "Rename"
self.CONFIRM_DELETION = "Are you sure you want to delete this task?"
self.TASK_RUNNING_WARNING = (
"Some tasks are still running. Are you sure you want to quit?"
)
self.YES = "Yes"
self.NO = "No"
self.COMPLETED = "Completed"
# File Types
self.ALL_FILES = "All Files (*)"
self.GGUF_FILES = "GGUF Files (*.gguf)"
self.DAT_FILES = "DAT Files (*.dat)"
self.JSON_FILES = "JSON Files (*.json)"
self.BIN_FILES = "Binary Files (*.bin)"
self.LORA_FILES = "LoRA Files (*.bin *.gguf)"
self.GGUF_AND_BIN_FILES = "GGUF and Binary Files (*.gguf *.bin)"
self.SHARDED = "sharded"
# Status Messages
self.DOWNLOAD_COMPLETE = "Download Complete"
self.CUDA_EXTRACTION_FAILED = "CUDA Extraction Failed"
self.PRESET_SAVED = "Preset Saved"
self.PRESET_LOADED = "Preset Loaded"
self.NO_ASSET_SELECTED = "No asset selected"
self.DOWNLOAD_FAILED = "Download failed"
self.NO_BACKEND_SELECTED = "No backend selected"
self.NO_MODEL_SELECTED = "No model selected"
self.NO_SUITABLE_CUDA_BACKENDS = "No suitable CUDA backends found"
self.IN_PROGRESS = "In Progress"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"llama.cpp binary downloaded and extracted to {0}"
)
self.CUDA_FILES_EXTRACTED = "CUDA files extracted to"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"No suitable CUDA backend found for extraction"
)
self.ERROR_FETCHING_RELEASES = "Error fetching releases: {0}"
self.CONFIRM_DELETION_TITLE = "Confirm Deletion"
self.LOG_FOR = "Log for {0}"
self.FAILED_TO_LOAD_PRESET = "Failed to load preset: {0}"
self.INITIALIZING_AUTOGGUF = "Initializing AutoGGUF application"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF initialization complete"
self.REFRESHING_BACKENDS = "Refreshing backends"
self.NO_BACKENDS_AVAILABLE = "No backends available"
self.FOUND_VALID_BACKENDS = "Found {0} valid backends"
self.SAVING_PRESET = "Saving preset"
self.PRESET_SAVED_TO = "Preset saved to {0}"
self.LOADING_PRESET = "Loading preset"
self.PRESET_LOADED_FROM = "Preset loaded from {0}"
self.ADDING_KV_OVERRIDE = "Adding KV override: {0}"
self.SAVING_TASK_PRESET = "Saving task preset for {0}"
self.TASK_PRESET_SAVED = "Task Preset Saved"
self.TASK_PRESET_SAVED_TO = "Task preset saved to {0}"
self.RESTARTING_TASK = "Restarting task: {0}"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download finished. Extracted to: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binary downloaded and extracted to {0}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"No suitable CUDA backend found for extraction"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binary downloaded and extracted to {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Refreshing llama.cpp releases"
self.UPDATING_ASSET_LIST = "Updating asset list"
self.UPDATING_CUDA_OPTIONS = "Updating CUDA options"
self.STARTING_LLAMACPP_DOWNLOAD = "Starting llama.cpp download"
self.UPDATING_CUDA_BACKENDS = "Updating CUDA backends"
self.NO_CUDA_BACKEND_SELECTED = "No CUDA backend selected for extraction"
self.EXTRACTING_CUDA_FILES = "Extracting CUDA files from {0} to {1}"
self.DOWNLOAD_ERROR = "Download error: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Showing task context menu"
self.SHOWING_PROPERTIES_FOR_TASK = "Showing properties for task: {0}"
self.CANCELLING_TASK = "Cancelling task: {0}"
self.CANCELED = "Canceled"
self.DELETING_TASK = "Deleting task: {0}"
self.LOADING_MODELS = "Loading models"
self.LOADED_MODELS = "Loaded {0} models"
self.BROWSING_FOR_MODELS_DIRECTORY = "Browsing for models directory"
self.SELECT_MODELS_DIRECTORY = "Select Models Directory"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Browsing for output directory"
self.SELECT_OUTPUT_DIRECTORY = "Select Output Directory"
self.BROWSING_FOR_LOGS_DIRECTORY = "Browsing for logs directory"
self.SELECT_LOGS_DIRECTORY = "Select Logs Directory"
self.BROWSING_FOR_IMATRIX_FILE = "Browsing for IMatrix file"
self.SELECT_IMATRIX_FILE = "Select IMatrix File"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU Usage: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validating quantization inputs"
self.MODELS_PATH_REQUIRED = "Models path is required"
self.OUTPUT_PATH_REQUIRED = "Output path is required"
self.LOGS_PATH_REQUIRED = "Logs path is required"
self.STARTING_MODEL_QUANTIZATION = "Starting model quantization"
self.INPUT_FILE_NOT_EXIST = "Input file '{0}' does not exist."
self.QUANTIZING_MODEL_TO = "Quantizing {0} to {1}"
self.QUANTIZATION_TASK_STARTED = "Quantization task started for {0}"
self.ERROR_STARTING_QUANTIZATION = "Error starting quantization: {0}"
self.UPDATING_MODEL_INFO = "Updating model info: {0}"
self.TASK_FINISHED = "Task finished: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Showing task details for: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Browsing for IMatrix data file"
self.SELECT_DATA_FILE = "Select Data File"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Browsing for IMatrix model file"
self.SELECT_MODEL_FILE = "Select Model File"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Browsing for IMatrix output file"
self.SELECT_OUTPUT_FILE = "Select Output File"
self.STARTING_IMATRIX_GENERATION = "Starting IMatrix generation"
self.BACKEND_PATH_NOT_EXIST = "Backend path does not exist: {0}"
self.GENERATING_IMATRIX = "Generating IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Error starting IMatrix generation: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix generation task started"
self.ERROR_MESSAGE = "Error: {0}"
self.TASK_ERROR = "Task error: {0}"
self.APPLICATION_CLOSING = "Application closing"
self.APPLICATION_CLOSED = "Application closed"
self.SELECT_QUANTIZATION_TYPE = "Select the quantization type"
self.ALLOWS_REQUANTIZING = (
"Allows requantizing tensors that have already been quantized"
)
self.LEAVE_OUTPUT_WEIGHT = "Will leave output.weight un(re)quantized"
self.DISABLE_K_QUANT_MIXTURES = (
"Disable k-quant mixtures and quantize all tensors to the same type"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"Use data in file as importance matrix for quant optimizations"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Use importance matrix for these tensors"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Don't use importance matrix for these tensors"
)
self.OUTPUT_TENSOR_TYPE = "Output Tensor Type:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Use this type for the output.weight tensor"
)
self.TOKEN_EMBEDDING_TYPE = "Token Embedding Type:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Use this type for the token embeddings tensor"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Will generate quantized model in the same shards as input"
)
self.OVERRIDE_MODEL_METADATA = "Override model metadata"
self.INPUT_DATA_FILE_FOR_IMATRIX = "Input data file for IMatrix generation"
self.MODEL_TO_BE_QUANTIZED = "Model to be quantized"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Output path for the generated IMatrix"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "How often to save the IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Set GPU offload value (-ngl)"
self.STARTING_LORA_CONVERSION = "Starting LoRA Conversion"
self.LORA_INPUT_PATH_REQUIRED = "LoRA input path is required."
self.LORA_OUTPUT_PATH_REQUIRED = "LoRA output path is required."
self.ERROR_STARTING_LORA_CONVERSION = "Error starting LoRA conversion: {}"
self.LORA_CONVERSION_TASK_STARTED = "LoRA conversion task started."
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = "Browsing for LoRA input directory..."
self.BROWSING_FOR_LORA_OUTPUT_FILE = "Browsing for LoRA output file..."
self.CONVERTING_LORA = "LoRA Conversion"
self.LORA_CONVERSION_FINISHED = "LoRA conversion finished."
self.LORA_FILE_MOVED = "LoRA file moved from {} to {}."
self.LORA_FILE_NOT_FOUND = "LoRA file not found: {}."
self.ERROR_MOVING_LORA_FILE = "Error moving LoRA file: {}"
self.MODEL_PATH_REQUIRED = "Model path is required."
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = (
"At least one LoRA adapter is required."
)
self.INVALID_LORA_SCALE_VALUE = "Invalid LoRA scale value."
self.ERROR_STARTING_LORA_EXPORT = "Error starting LoRA export: {}"
self.LORA_EXPORT_TASK_STARTED = "LoRA export task started."
self.EXPORTING_LORA = "Exporting LoRA..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = (
"Browsing for Export LoRA Model File..."
)
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = (
"Browsing for Export LoRA Output File..."
)
self.ADDING_LORA_ADAPTER = "Adding LoRA Adapter..."
self.DELETING_LORA_ADAPTER = "Deleting LoRA Adapter..."
self.SELECT_LORA_ADAPTER_FILE = "Select LoRA Adapter File"
self.STARTING_LORA_EXPORT = "Starting LoRA export..."
self.SELECT_OUTPUT_TYPE = "Select Output Type (GGUF or GGML)"
self.BASE_MODEL = "Base Model"
self.SELECT_BASE_MODEL_FILE = "Select Base Model File (GGUF)"
self.BASE_MODEL_PATH_REQUIRED = "Base model path is required for GGUF output."
self.BROWSING_FOR_BASE_MODEL_FILE = "Browsing for base model file..."
self.SELECT_BASE_MODEL_FOLDER = (
"Select Base Model Folder (containing safetensors)"
)
self.BROWSING_FOR_BASE_MODEL_FOLDER = "Browsing for base model folder..."
self.LORA_CONVERSION_FROM_TO = "LoRA Conversion from {} to {}"
self.GENERATING_IMATRIX_FOR = "Generating IMatrix for {}"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = (
"Model path is required for IMatrix generation."
)
self.NO_ASSET_SELECTED_FOR_CUDA_CHECK = "No asset selected for CUDA check"
self.NO_QUANTIZATION_TYPE_SELECTED = "No quantization type selected. Please select at least one quantization type."
self.STARTING_HF_TO_GGUF_CONVERSION = "Starting HuggingFace to GGUF conversion"
self.MODEL_DIRECTORY_REQUIRED = "Model directory is required"
self.HF_TO_GGUF_CONVERSION_COMMAND = "HF to GGUF Conversion Command: {}"
self.CONVERTING_TO_GGUF = "Converting {} to GGUF"
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
"Error starting HuggingFace to GGUF conversion: {}"
)
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = (
"HuggingFace to GGUF conversion task started"
)
# Split GGUF
self.SPLIT_GGUF = "Split GGUF"
self.SPLIT_MAX_SIZE = "Split Max Size"
self.SPLIT_MAX_TENSORS = "Split Max Tensors"
self.SPLIT_GGUF_TASK_STARTED = "GGUF Split task started"
self.SPLIT_GGUF_TASK_FINISHED = "GGUF Split task finished"
self.SPLIT_GGUF_COMMAND = "GGUF Split Command"
self.SPLIT_GGUF_ERROR = "Error starting GGUF split"
# Model actions
self.CONFIRM_DELETE = "Confirm Delete"
self.DELETE_MODEL_WARNING = "Are you sure you want to delete the model: {}?"
self.MODEL_RENAMED_SUCCESSFULLY = "Model renamed successfully."
self.MODEL_DELETED_SUCCESSFULLY = "Model deleted successfully."
class _French(_Localization):
def __init__(self):
super().__init__()
# Interface utilisateur générale
self.WINDOW_TITLE = "AutoGGUF (quantificateur de modèle GGUF automatisé)"
self.RAM_USAGE = "Utilisation de la RAM :"
self.CPU_USAGE = "Utilisation du processeur :"
self.BACKEND = "Backend Llama.cpp :"
self.REFRESH_BACKENDS = "Actualiser les backends"
self.MODELS_PATH = "Chemin des modèles :"
self.OUTPUT_PATH = "Chemin de sortie :"
self.LOGS_PATH = "Chemin des journaux :"
self.BROWSE = "Parcourir"
self.AVAILABLE_MODELS = "Modèles disponibles :"
self.REFRESH_MODELS = "Actualiser les modèles"
self.STARTUP_ELASPED_TIME = "L'initialisation a pris {0} ms"
# Variables d'environnement
self.DOTENV_FILE_NOT_FOUND = "Fichier .env introuvable."
self.COULD_NOT_PARSE_LINE = "Impossible d'analyser la ligne : {0}"
self.ERROR_LOADING_DOTENV = "Erreur lors du chargement de .env : {0}"
# Importation de modèle
self.IMPORT_MODEL = "Importer un modèle"
self.SELECT_MODEL_TO_IMPORT = "Sélectionner le modèle à importer"
self.CONFIRM_IMPORT = "Confirmer l'importation"
self.IMPORT_MODEL_CONFIRMATION = "Voulez-vous importer le modèle {} ?"
self.MODEL_IMPORTED_SUCCESSFULLY = "Modèle {} importé avec succès"
self.IMPORTING_MODEL = "Importation du modèle"
self.IMPORTED_MODEL_TOOLTIP = "Modèle importé : {}"
# Quantification AutoFP8
self.AUTOFP8_QUANTIZATION_TASK_STARTED = (
"La tâche de quantification AutoFP8 a démarré"
)
self.ERROR_STARTING_AUTOFP8_QUANTIZATION = (
"Erreur lors du démarrage de la quantification AutoFP8"
)
self.QUANTIZING_WITH_AUTOFP8 = "Quantification de {0} avec AutoFP8"
self.QUANTIZING_TO_WITH_AUTOFP8 = "Quantification de {0} en {1}"
self.QUANTIZE_TO_FP8_DYNAMIC = "Quantifier en FP8 dynamique"
self.OPEN_MODEL_FOLDER = "Ouvrir le dossier du modèle"
self.QUANTIZE = "Quantifier"
self.OPEN_MODEL_FOLDER = "Ouvrir le dossier du modèle"
self.INPUT_MODEL = "Modèle d'entrée :"
# Vérification GGUF
self.INVALID_GGUF_FILE = "Fichier GGUF invalide : {}"
self.SHARDED_MODEL_NAME = "{} (Fragmenté)"
self.IMPORTED_MODEL_TOOLTIP = "Modèle importé : {}"
self.CONCATENATED_FILE_WARNING = "Il s'agit d'une partie de fichier concaténée. Cela ne fonctionnera pas avec llama-quantize ; veuillez d'abord concaténer le fichier."
self.CONCATENATED_FILES_FOUND = "{} parties de fichiers concaténées trouvées. Veuillez d'abord concaténer les fichiers."
# Plugins
self.PLUGINS_DIR_NOT_EXIST = (
"Le répertoire des plugins '{}' n'existe pas. Aucun plugin ne sera chargé."
)
self.PLUGINS_DIR_NOT_DIRECTORY = (
"'{}' existe mais n'est pas un répertoire. Aucun plugin ne sera chargé."
)
self.PLUGIN_LOADED = "Plugin chargé : {} {}"
self.PLUGIN_INCOMPATIBLE = "Le plugin {} {} n'est pas compatible avec la version {} d'AutoGGUF. Versions prises en charge : {}"
self.PLUGIN_LOAD_FAILED = "Échec du chargement du plugin {} : {}"
self.NO_PLUGINS_LOADED = "Aucun plugin chargé."
# Surveillance du GPU
self.GPU_USAGE = "Utilisation du GPU :"
self.GPU_USAGE_FORMAT = "GPU: {:.1f}% | VRAM: {:.1f}% ({} Mo / {} Mo)"
self.GPU_DETAILS = "Détails du GPU"
self.GPU_USAGE_OVER_TIME = "Utilisation du GPU au fil du temps"
self.VRAM_USAGE_OVER_TIME = "Utilisation de la VRAM au fil du temps"
self.PERCENTAGE = "Pourcentage"
self.TIME = "Temps (s)"
self.NO_GPU_DETECTED = "Aucun GPU détecté"
self.SELECT_GPU = "Sélectionner le GPU"
self.AMD_GPU_NOT_SUPPORTED = "GPU AMD détecté, mais non pris en charge"
# Quantification
self.QUANTIZATION_TYPE = "Type de quantification :"
self.ALLOW_REQUANTIZE = "Autoriser la requantification"
self.LEAVE_OUTPUT_TENSOR = "Laisser le tenseur de sortie"
self.PURE = "Pur"
self.IMATRIX = "IMatrix :"
self.INCLUDE_WEIGHTS = "Inclure les poids :"
self.EXCLUDE_WEIGHTS = "Exclure les poids :"
self.USE_OUTPUT_TENSOR_TYPE = "Utiliser le type de tenseur de sortie"
self.USE_TOKEN_EMBEDDING_TYPE = "Utiliser le type d'intégration de jetons"
self.KEEP_SPLIT = "Conserver la division"
self.KV_OVERRIDES = "Remplacements KV :"
self.ADD_NEW_OVERRIDE = "Ajouter un nouveau remplacement"
self.QUANTIZE_MODEL = "Quantifier le modèle"
self.EXTRA_ARGUMENTS = "Arguments supplémentaires :"
self.EXTRA_ARGUMENTS_LABEL = "Arguments de ligne de commande supplémentaires"
self.QUANTIZATION_COMMAND = "Commande de quantification"
# Préréglages
self.SAVE_PRESET = "Enregistrer le préréglage"
self.LOAD_PRESET = "Charger le préréglage"
# Tâches
self.TASKS = "Tâches :"
# Téléchargement de llama.cpp
self.DOWNLOAD_LLAMACPP = "Télécharger llama.cpp"
self.SELECT_RELEASE = "Sélectionner la version :"
self.SELECT_ASSET = "Sélectionner l'actif :"
self.EXTRACT_CUDA_FILES = "Extraire les fichiers CUDA"
self.SELECT_CUDA_BACKEND = "Sélectionner le backend CUDA :"
self.DOWNLOAD = "Télécharger"
self.REFRESH_RELEASES = "Actualiser les versions"
# Génération d'IMatrix
self.IMATRIX_GENERATION = "Génération d'IMatrix"
self.DATA_FILE = "Fichier de données :"
self.MODEL = "Modèle :"
self.OUTPUT = "Sortie :"
self.OUTPUT_FREQUENCY = "Fréquence de sortie :"
self.GPU_OFFLOAD = "Déchargement GPU :"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Générer IMatrix"
self.CONTEXT_SIZE = "Taille du contexte :"
self.CONTEXT_SIZE_FOR_IMATRIX = (
"Taille du contexte pour la génération d'IMatrix"
)
self.THREADS = "Threads :"
self.NUMBER_OF_THREADS_FOR_IMATRIX = (
"Nombre de threads pour la génération d'IMatrix"
)
self.IMATRIX_GENERATION_COMMAND = "Commande de génération d'IMatrix"
# Conversion LoRA
self.LORA_CONVERSION = "Conversion LoRA"
self.LORA_INPUT_PATH = "Chemin d'entrée LoRA"
self.LORA_OUTPUT_PATH = "Chemin de sortie LoRA"
self.SELECT_LORA_INPUT_DIRECTORY = "Sélectionner le répertoire d'entrée LoRA"
self.SELECT_LORA_OUTPUT_FILE = "Sélectionner le fichier de sortie LoRA"
self.CONVERT_LORA = "Convertir LoRA"
self.LORA_CONVERSION_COMMAND = "Commande de conversion LoRA"
# Exportation LoRA
self.EXPORT_LORA = "Exporter LoRA"
self.GGML_LORA_ADAPTERS = "Adaptateurs GGML LoRA"
self.SELECT_LORA_ADAPTER_FILES = "Sélectionner les fichiers d'adaptateur LoRA"
self.ADD_ADAPTER = "Ajouter un adaptateur"
self.DELETE_ADAPTER = "Supprimer"
self.LORA_SCALE = "Échelle LoRA"
self.ENTER_LORA_SCALE_VALUE = "Saisir la valeur de l'échelle LoRA (facultatif)"
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = (
"Nombre de threads pour l'exportation LoRA"
)
self.LORA_EXPORT_COMMAND = "Commande d'exportation LoRA"
# Conversion HuggingFace vers GGUF
self.HF_TO_GGUF_CONVERSION = "Conversion HuggingFace vers GGUF"
self.MODEL_DIRECTORY = "Répertoire du modèle :"
self.OUTPUT_FILE = "Fichier de sortie :"
self.OUTPUT_TYPE = "Type de sortie :"
self.VOCAB_ONLY = "Vocab uniquement"
self.USE_TEMP_FILE = "Utiliser un fichier temporaire"
self.NO_LAZY_EVALUATION = "Pas d'évaluation paresseuse"
self.MODEL_NAME = "Nom du modèle :"
self.VERBOSE = "Verbeux"
self.SPLIT_MAX_SIZE = "Taille maximale de la division :"
self.DRY_RUN = "Exécution à sec"
self.CONVERT_HF_TO_GGUF = "Convertir HF en GGUF"
self.SELECT_HF_MODEL_DIRECTORY = (
"Sélectionner le répertoire du modèle HuggingFace"
)
self.BROWSE_FOR_HF_MODEL_DIRECTORY = (
"Recherche du répertoire du modèle HuggingFace"
)
self.BROWSE_FOR_HF_TO_GGUF_OUTPUT = (
"Recherche du fichier de sortie HuggingFace vers GGUF"
)
# Vérification des mises à jour
self.UPDATE_AVAILABLE = "Mise à jour disponible"
self.NEW_VERSION_AVAILABLE = "Une nouvelle version est disponible : {}"
self.DOWNLOAD_NEW_VERSION = "Télécharger ?"
self.ERROR_CHECKING_FOR_UPDATES = (
"Erreur lors de la vérification des mises à jour :"
)
self.CHECKING_FOR_UPDATES = "Vérification des mises à jour"
# Messages généraux
self.ERROR = "Erreur"
self.WARNING = "Avertissement"
self.PROPERTIES = "Propriétés"
self.CANCEL = "Annuler"
self.RESTART = "Redémarrer"
self.DELETE = "Supprimer"
self.CONFIRM_DELETION = "Êtes-vous sûr de vouloir supprimer cette tâche ?"
self.TASK_RUNNING_WARNING = "Certaines tâches sont encore en cours d'exécution. Êtes-vous sûr de vouloir quitter ?"
self.YES = "Oui"
self.NO = "Non"
self.COMPLETED = "Terminé"
# Types de fichiers
self.ALL_FILES = "Tous les fichiers (*)"
self.GGUF_FILES = "Fichiers GGUF (*.gguf)"
self.DAT_FILES = "Fichiers DAT (*.dat)"
self.JSON_FILES = "Fichiers JSON (*.json)"
self.BIN_FILES = "Fichiers binaires (*.bin)"
self.LORA_FILES = "Fichiers LoRA (*.bin *.gguf)"
self.GGUF_AND_BIN_FILES = "Fichiers GGUF et binaires (*.gguf *.bin)"
self.SHARDED = "fragmenté"
# Messages d'état
self.DOWNLOAD_COMPLETE = "Téléchargement terminé"
self.CUDA_EXTRACTION_FAILED = "Échec de l'extraction CUDA"
self.PRESET_SAVED = "Préréglage enregistré"
self.PRESET_LOADED = "Préréglage chargé"
self.NO_ASSET_SELECTED = "Aucun actif sélectionné"
self.DOWNLOAD_FAILED = "Échec du téléchargement"
self.NO_BACKEND_SELECTED = "Aucun backend sélectionné"
self.NO_MODEL_SELECTED = "Aucun modèle sélectionné"
self.NO_SUITABLE_CUDA_BACKENDS = "Aucun backend CUDA approprié trouvé"
self.IN_PROGRESS = "En cours"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"Binaire llama.cpp téléchargé et extrait vers {0}"
)
self.CUDA_FILES_EXTRACTED = "Fichiers CUDA extraits vers"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Aucun backend CUDA approprié trouvé pour l'extraction"
)
self.ERROR_FETCHING_RELEASES = (
"Erreur lors de la récupération des versions : {0}"
)
self.CONFIRM_DELETION_TITLE = "Confirmer la suppression"
self.LOG_FOR = "Journal pour {0}"
self.FAILED_TO_LOAD_PRESET = "Échec du chargement du préréglage : {0}"
self.INITIALIZING_AUTOGGUF = "Initialisation de l'application AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Initialisation d'AutoGGUF terminée"
self.REFRESHING_BACKENDS = "Actualisation des backends"
self.NO_BACKENDS_AVAILABLE = "Aucun backend disponible"
self.FOUND_VALID_BACKENDS = "{0} backends valides trouvés"
self.SAVING_PRESET = "Enregistrement du préréglage"
self.PRESET_SAVED_TO = "Préréglage enregistré vers {0}"
self.LOADING_PRESET = "Chargement du préréglage"
self.PRESET_LOADED_FROM = "Préréglage chargé depuis {0}"
self.ADDING_KV_OVERRIDE = "Ajout du remplacement KV : {0}"
self.SAVING_TASK_PRESET = "Enregistrement du préréglage de tâche pour {0}"
self.TASK_PRESET_SAVED = "Préréglage de tâche enregistré"
self.TASK_PRESET_SAVED_TO = "Préréglage de tâche enregistré vers {0}"
self.RESTARTING_TASK = "Redémarrage de la tâche : {0}"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"Téléchargement terminé. Extrait vers : {0}"
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"Binaire llama.cpp téléchargé et extrait vers {0}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Aucun backend CUDA approprié trouvé pour l'extraction"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Binaire llama.cpp téléchargé et extrait vers {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Actualisation des versions de llama.cpp"
self.UPDATING_ASSET_LIST = "Mise à jour de la liste des actifs"
self.UPDATING_CUDA_OPTIONS = "Mise à jour des options CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Démarrage du téléchargement de llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Mise à jour des backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = (
"Aucun backend CUDA sélectionné pour l'extraction"
)
self.EXTRACTING_CUDA_FILES = "Extraction des fichiers CUDA de {0} vers {1}"
self.DOWNLOAD_ERROR = "Erreur de téléchargement : {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Affichage du menu contextuel de la tâche"
self.SHOWING_PROPERTIES_FOR_TASK = "Affichage des propriétés de la tâche : {0}"
self.CANCELLING_TASK = "Annulation de la tâche : {0}"
self.CANCELED = "Annulé"
self.DELETING_TASK = "Suppression de la tâche : {0}"
self.LOADING_MODELS = "Chargement des modèles"
self.LOADED_MODELS = "{0} modèles chargés"
self.BROWSING_FOR_MODELS_DIRECTORY = "Recherche du répertoire des modèles"
self.SELECT_MODELS_DIRECTORY = "Sélectionner le répertoire des modèles"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Recherche du répertoire de sortie"
self.SELECT_OUTPUT_DIRECTORY = "Sélectionner le répertoire de sortie"
self.BROWSING_FOR_LOGS_DIRECTORY = "Recherche du répertoire des journaux"
self.SELECT_LOGS_DIRECTORY = "Sélectionner le répertoire des journaux"
self.BROWSING_FOR_IMATRIX_FILE = "Recherche du fichier IMatrix"
self.SELECT_IMATRIX_FILE = "Sélectionner le fichier IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} Mo / {2} Mo)"
self.CPU_USAGE_FORMAT = "Utilisation du processeur : {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validation des entrées de quantification"
self.MODELS_PATH_REQUIRED = "Le chemin des modèles est requis"
self.OUTPUT_PATH_REQUIRED = "Le chemin de sortie est requis"
self.LOGS_PATH_REQUIRED = "Le chemin des journaux est requis"
self.STARTING_MODEL_QUANTIZATION = "Démarrage de la quantification du modèle"
self.INPUT_FILE_NOT_EXIST = "Le fichier d'entrée '{0}' n'existe pas."
self.QUANTIZING_MODEL_TO = "Quantification de {0} en {1}"
self.QUANTIZATION_TASK_STARTED = "La tâche de quantification a démarré pour {0}"
self.ERROR_STARTING_QUANTIZATION = (
"Erreur lors du démarrage de la quantification : {0}"
)
self.UPDATING_MODEL_INFO = "Mise à jour des informations du modèle : {0}"
self.TASK_FINISHED = "Tâche terminée : {0}"
self.SHOWING_TASK_DETAILS_FOR = "Affichage des détails de la tâche pour : {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Recherche du fichier de données IMatrix"
self.SELECT_DATA_FILE = "Sélectionner le fichier de données"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Recherche du fichier de modèle IMatrix"
self.SELECT_MODEL_FILE = "Sélectionner le fichier de modèle"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Recherche du fichier de sortie IMatrix"
self.SELECT_OUTPUT_FILE = "Sélectionner le fichier de sortie"
self.STARTING_IMATRIX_GENERATION = "Démarrage de la génération d'IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Le chemin du backend n'existe pas : {0}"
self.GENERATING_IMATRIX = "Génération d'IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Erreur lors du démarrage de la génération d'IMatrix : {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = (
"La tâche de génération d'IMatrix a démarré"
)
self.ERROR_MESSAGE = "Erreur : {0}"
self.TASK_ERROR = "Erreur de tâche : {0}"
self.APPLICATION_CLOSING = "Fermeture de l'application"
self.APPLICATION_CLOSED = "Application fermée"
self.SELECT_QUANTIZATION_TYPE = "Sélectionnez le type de quantification"
self.ALLOWS_REQUANTIZING = (
"Permet de requantifier les tenseurs qui ont déjà été quantifiés"
)
self.LEAVE_OUTPUT_WEIGHT = "Laissera output.weight non (re)quantifié"
self.DISABLE_K_QUANT_MIXTURES = "Désactiver les mélanges k-quant et quantifier tous les tenseurs au même type"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Utiliser les données du fichier comme matrice d'importance pour les optimisations de quantification"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Utiliser la matrice d'importance pour ces tenseurs"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Ne pas utiliser la matrice d'importance pour ces tenseurs"
)
self.OUTPUT_TENSOR_TYPE = "Type de tenseur de sortie :"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Utiliser ce type pour le tenseur output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Type d'intégration de jetons :"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Utiliser ce type pour le tenseur d'intégration de jetons"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Générera le modèle quantifié dans les mêmes fragments que l'entrée"
)
self.OVERRIDE_MODEL_METADATA = "Remplacer les métadonnées du modèle"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Fichier de données d'entrée pour la génération d'IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modèle à quantifier"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Chemin de sortie pour l'IMatrix généré"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Fréquence d'enregistrement de l'IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Définir la valeur de déchargement GPU (-ngl)"
self.STARTING_LORA_CONVERSION = "Démarrage de la conversion LoRA"
self.LORA_INPUT_PATH_REQUIRED = "Le chemin d'entrée LoRA est requis."
self.LORA_OUTPUT_PATH_REQUIRED = "Le chemin de sortie LoRA est requis."
self.ERROR_STARTING_LORA_CONVERSION = (
"Erreur lors du démarrage de la conversion LoRA : {}"
)
self.LORA_CONVERSION_TASK_STARTED = "La tâche de conversion LoRA a démarré."
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = (
"Recherche du répertoire d'entrée LoRA..."
)
self.BROWSING_FOR_LORA_OUTPUT_FILE = "Recherche du fichier de sortie LoRA..."
self.CONVERTING_LORA = "Conversion LoRA"
self.LORA_CONVERSION_FINISHED = "Conversion LoRA terminée."
self.LORA_FILE_MOVED = "Fichier LoRA déplacé de {} vers {}."
self.LORA_FILE_NOT_FOUND = "Fichier LoRA introuvable : {}."
self.ERROR_MOVING_LORA_FILE = "Erreur lors du déplacement du fichier LoRA : {}"
self.MODEL_PATH_REQUIRED = "Le chemin du modèle est requis."
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = (
"Au moins un adaptateur LoRA est requis."
)
self.INVALID_LORA_SCALE_VALUE = "Valeur d'échelle LoRA invalide."
self.ERROR_STARTING_LORA_EXPORT = (
"Erreur lors du démarrage de l'exportation LoRA : {}"
)
self.LORA_EXPORT_TASK_STARTED = "La tâche d'exportation LoRA a démarré."
self.EXPORTING_LORA = "Exportation de LoRA..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = (
"Recherche du fichier de modèle LoRA à exporter..."
)
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = (
"Recherche du fichier de sortie LoRA à exporter..."
)
self.ADDING_LORA_ADAPTER = "Ajout d'un adaptateur LoRA..."
self.DELETING_LORA_ADAPTER = "Suppression d'un adaptateur LoRA..."
self.SELECT_LORA_ADAPTER_FILE = "Sélectionner le fichier d'adaptateur LoRA"
self.STARTING_LORA_EXPORT = "Démarrage de l'exportation LoRA..."
self.SELECT_OUTPUT_TYPE = "Sélectionner le type de sortie (GGUF ou GGML)"
self.BASE_MODEL = "Modèle de base"
self.SELECT_BASE_MODEL_FILE = "Sélectionner le fichier de modèle de base (GGUF)"
self.BASE_MODEL_PATH_REQUIRED = (
"Le chemin du modèle de base est requis pour la sortie GGUF."
)
self.BROWSING_FOR_BASE_MODEL_FILE = "Recherche du fichier de modèle de base..."
self.SELECT_BASE_MODEL_FOLDER = (
"Sélectionner le dossier du modèle de base (contenant safetensors)"
)
self.BROWSING_FOR_BASE_MODEL_FOLDER = (
"Recherche du dossier du modèle de base..."
)
self.LORA_CONVERSION_FROM_TO = "Conversion LoRA de {} vers {}"
self.GENERATING_IMATRIX_FOR = "Génération d'IMatrix pour {}"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = (
"Le chemin du modèle est requis pour la génération d'IMatrix."
)
self.NO_ASSET_SELECTED_FOR_CUDA_CHECK = (
"Aucun actif sélectionné pour la vérification CUDA"
)
self.NO_QUANTIZATION_TYPE_SELECTED = "Aucun type de quantification sélectionné. Veuillez sélectionner au moins un type de quantification."
self.STARTING_HF_TO_GGUF_CONVERSION = (
"Démarrage de la conversion HuggingFace vers GGUF"
)
self.MODEL_DIRECTORY_REQUIRED = "Le répertoire du modèle est requis"
self.HF_TO_GGUF_CONVERSION_COMMAND = "Commande de conversion HF vers GGUF : {}"
self.CONVERTING_TO_GGUF = "Conversion de {} en GGUF"
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
"Erreur lors du démarrage de la conversion HuggingFace vers GGUF : {}"
)
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = (
"La tâche de conversion HuggingFace vers GGUF a démarré"
)
class _SimplifiedChinese(_Localization):
def __init__(self):
super().__init__()
# 通用界面
self.WINDOW_TITLE = "AutoGGUF自动GGUF模型量化器"
self.RAM_USAGE = "内存使用率:"
self.CPU_USAGE = "CPU使用率"
self.BACKEND = "Llama.cpp后端"
self.REFRESH_BACKENDS = "刷新后端"
self.MODELS_PATH = "模型路径:"
self.OUTPUT_PATH = "输出路径:"
self.LOGS_PATH = "日志路径:"
self.BROWSE = "浏览"
self.AVAILABLE_MODELS = "可用模型:"
self.REFRESH_MODELS = "刷新模型"
# 量化
self.QUANTIZATION_TYPE = "量化类型:"
self.ALLOW_REQUANTIZE = "允许重新量化"
self.LEAVE_OUTPUT_TENSOR = "保留输出张量"
self.PURE = "纯净"
self.IMATRIX = "重要性矩阵:"
self.INCLUDE_WEIGHTS = "包含权重:"
self.EXCLUDE_WEIGHTS = "排除权重:"
self.USE_OUTPUT_TENSOR_TYPE = "使用输出张量类型"
self.USE_TOKEN_EMBEDDING_TYPE = "使用词元嵌入类型"
self.KEEP_SPLIT = "保持分割"
self.KV_OVERRIDES = "KV覆盖"
self.ADD_NEW_OVERRIDE = "添加新覆盖"
self.QUANTIZE_MODEL = "量化模型"
self.EXTRA_ARGUMENTS = "额外参数:"
self.EXTRA_ARGUMENTS_LABEL = "附加命令行参数"
self.QUANTIZATION_COMMAND = "量化命令"
# 预设
self.SAVE_PRESET = "保存预设"
self.LOAD_PRESET = "加载预设"
# 任务
self.TASKS = "任务:"
# llama.cpp下载
self.DOWNLOAD_LLAMACPP = "下载llama.cpp"
self.SELECT_RELEASE = "选择版本:"
self.SELECT_ASSET = "选择资源:"
self.EXTRACT_CUDA_FILES = "提取CUDA文件"
self.SELECT_CUDA_BACKEND = "选择CUDA后端"
self.DOWNLOAD = "下载"
self.REFRESH_RELEASES = "刷新版本"
# IMatrix生成
self.IMATRIX_GENERATION = "IMatrix生成"
self.DATA_FILE = "数据文件:"
self.MODEL = "模型:"
self.OUTPUT = "输出:"
self.OUTPUT_FREQUENCY = "输出频率:"
self.GPU_OFFLOAD = "GPU卸载"
self.AUTO = "自动"
self.GENERATE_IMATRIX = "生成IMatrix"
self.CONTEXT_SIZE = "上下文大小:"
self.CONTEXT_SIZE_FOR_IMATRIX = "IMatrix生成的上下文大小"
self.THREADS = "线程数:"
self.NUMBER_OF_THREADS_FOR_IMATRIX = "IMatrix生成的线程数"
self.IMATRIX_GENERATION_COMMAND = "IMatrix生成命令"
# LoRA转换
self.LORA_CONVERSION = "LoRA转换"
self.LORA_INPUT_PATH = "LoRA输入路径"
self.LORA_OUTPUT_PATH = "LoRA输出路径"
self.SELECT_LORA_INPUT_DIRECTORY = "选择LoRA输入目录"
self.SELECT_LORA_OUTPUT_FILE = "选择LoRA输出文件"
self.CONVERT_LORA = "转换LoRA"
self.LORA_CONVERSION_COMMAND = "LoRA转换命令"
# LoRA导出
self.EXPORT_LORA = "导出LoRA"
self.GGML_LORA_ADAPTERS = "GGML LoRA适配器"
self.SELECT_LORA_ADAPTER_FILES = "选择LoRA适配器文件"
self.ADD_ADAPTER = "添加适配器"
self.DELETE_ADAPTER = "删除"
self.LORA_SCALE = "LoRA比例"
self.ENTER_LORA_SCALE_VALUE = "输入LoRA比例值可选"
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = "LoRA导出的线程数"
self.LORA_EXPORT_COMMAND = "LoRA导出命令"
# HuggingFace到GGUF转换
self.HF_TO_GGUF_CONVERSION = "HuggingFace到GGUF转换"
self.MODEL_DIRECTORY = "模型目录:"
self.OUTPUT_FILE = "输出文件:"
self.OUTPUT_TYPE = "输出类型:"
self.VOCAB_ONLY = "仅词汇表"
self.USE_TEMP_FILE = "使用临时文件"
self.NO_LAZY_EVALUATION = "不使用延迟评估"
self.MODEL_NAME = "模型名称:"
self.VERBOSE = "详细模式"
self.SPLIT_MAX_SIZE = "最大分割大小:"
self.DRY_RUN = "试运行"
self.CONVERT_HF_TO_GGUF = "转换HF到GGUF"
self.SELECT_HF_MODEL_DIRECTORY = "选择HuggingFace模型目录"
self.BROWSE_FOR_HF_MODEL_DIRECTORY = "浏览HuggingFace模型目录"
self.BROWSE_FOR_HF_TO_GGUF_OUTPUT = "浏览HuggingFace到GGUF输出文件"
# 通用消息
self.ERROR = "错误"
self.WARNING = "警告"
self.PROPERTIES = "属性"
self.CANCEL = "取消"
self.RESTART = "重启"
self.DELETE = "删除"
self.CONFIRM_DELETION = "您确定要删除此任务吗?"
self.TASK_RUNNING_WARNING = "一些任务仍在运行。您确定要退出吗?"
self.YES = ""
self.NO = ""
self.COMPLETED = "已完成"
# 文件类型
self.ALL_FILES = "所有文件 (*)"
self.GGUF_FILES = "GGUF文件 (*.gguf)"
self.DAT_FILES = "DAT文件 (*.dat)"
self.JSON_FILES = "JSON文件 (*.json)"
self.BIN_FILES = "二进制文件 (*.bin)"
self.LORA_FILES = "LoRA文件 (*.bin)"
self.GGUF_AND_BIN_FILES = "GGUF和二进制文件 (*.gguf *.bin)"
self.SHARDED = "分片"
# 状态消息
self.DOWNLOAD_COMPLETE = "下载完成"
self.CUDA_EXTRACTION_FAILED = "CUDA提取失败"
self.PRESET_SAVED = "预设已保存"
self.PRESET_LOADED = "预设已加载"
self.NO_ASSET_SELECTED = "未选择资源"
self.DOWNLOAD_FAILED = "下载失败"
self.NO_BACKEND_SELECTED = "未选择后端"
self.NO_MODEL_SELECTED = "未选择模型"
self.NO_SUITABLE_CUDA_BACKENDS = "未找到合适的CUDA后端"
self.IN_PROGRESS = "进行中"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp二进制文件已下载并解压到{0}"
self.CUDA_FILES_EXTRACTED = "CUDA文件已提取到"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = "未找到合适的CUDA后端进行提取"
self.ERROR_FETCHING_RELEASES = "获取版本时出错:{0}"
self.CONFIRM_DELETION_TITLE = "确认删除"
self.LOG_FOR = "{0}的日志"
self.FAILED_LOAD_PRESET = "加载预设失败:{0}"
self.INITIALIZING_AUTOGGUF = "初始化AutoGGUF应用程序"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF初始化完成"
self.REFRESHING_BACKENDS = "刷新后端"
self.NO_BACKENDS_AVAILABLE = "没有可用的后端"
self.FOUND_VALID_BACKENDS = "找到{0}个有效后端"
self.SAVING_PRESET = "保存预设"
self.PRESET_SAVED_TO = "预设已保存到{0}"
self.LOADING_PRESET = "加载预设"
self.PRESET_LOADED_FROM = "预设已从{0}加载"
self.ADDING_KV_OVERRIDE = "添加KV覆盖{0}"
self.SAVING_TASK_PRESET = "保存{0}的任务预设"
self.TASK_PRESET_SAVED = "任务预设已保存"
self.TASK_PRESET_SAVED_TO = "任务预设已保存到{0}"
self.RESTARTING_TASK = "重启任务:{0}"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "下载完成。已解压到:{0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp二进制文件已下载并解压到{0}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = "未找到合适的CUDA后端进行提取"
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp二进制文件已下载并解压到{0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "刷新llama.cpp版本"
self.UPDATING_ASSET_LIST = "更新资源列表"
self.UPDATING_CUDA_OPTIONS = "更新CUDA选项"
self.STARTING_LLAMACPP_DOWNLOAD = "开始下载llama.cpp"
self.UPDATING_CUDA_BACKENDS = "更新CUDA后端"
self.NO_CUDA_BACKEND_SELECTED = "未选择CUDA后端进行提取"
self.EXTRACTING_CUDA_FILES = "{0}提取CUDA文件到{1}"
self.DOWNLOAD_ERROR = "下载错误:{0}"
self.SHOWING_TASK_CONTEXT_MENU = "显示任务上下文菜单"
self.SHOWING_PROPERTIES_FOR_TASK = "显示任务属性:{0}"
self.CANCELLING_TASK = "取消任务:{0}"
self.CANCELED = "已取消"
self.DELETING_TASK = "删除任务:{0}"
self.LOADING_MODELS = "加载模型"
self.LOADED_MODELS = "已加载{0}个模型"
self.BROWSING_FOR_MODELS_DIRECTORY = "浏览模型目录"
self.SELECT_MODELS_DIRECTORY = "选择模型目录"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "浏览输出目录"
self.SELECT_OUTPUT_DIRECTORY = "选择输出目录"
self.BROWSING_FOR_LOGS_DIRECTORY = "浏览日志目录"
self.SELECT_LOGS_DIRECTORY = "选择日志目录"
self.BROWSING_FOR_IMATRIX_FILE = "浏览IMatrix文件"
self.SELECT_IMATRIX_FILE = "选择IMatrix文件"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU使用率{0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "验证量化输入"
self.MODELS_PATH_REQUIRED = "需要模型路径"
self.OUTPUT_PATH_REQUIRED = "需要输出路径"
self.LOGS_PATH_REQUIRED = "需要日志路径"
self.STARTING_MODEL_QUANTIZATION = "开始模型量化"
self.INPUT_FILE_NOT_EXIST = "输入文件'{0}'不存在。"
self.QUANTIZING_MODEL_TO = "{0}量化为{1}"
self.QUANTIZATION_TASK_STARTED = "已开始{0}的量化任务"
self.ERROR_STARTING_QUANTIZATION = "启动量化时出错:{0}"
self.UPDATING_MODEL_INFO = "更新模型信息:{0}"
self.TASK_FINISHED = "任务完成:{0}"
self.SHOWING_TASK_DETAILS_FOR = "显示任务详情:{0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "浏览IMatrix数据文件"
self.SELECT_DATA_FILE = "选择数据文件"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "浏览IMatrix模型文件"
self.SELECT_MODEL_FILE = "选择模型文件"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "浏览IMatrix输出文件"
self.SELECT_OUTPUT_FILE = "选择输出文件"
self.STARTING_IMATRIX_GENERATION = "开始IMatrix生成"
self.BACKEND_PATH_NOT_EXIST = "后端路径不存在:{0}"
self.GENERATING_IMATRIX = "生成IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = "启动IMatrix生成时出错{0}"
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix生成任务已开始"
self.ERROR_MESSAGE = "错误:{0}"
self.TASK_ERROR = "任务错误:{0}"
self.APPLICATION_CLOSING = "应用程序正在关闭"
self.APPLICATION_CLOSED = "应用程序已关闭"
self.SELECT_QUANTIZATION_TYPE = "选择量化类型"
self.ALLOWS_REQUANTIZING = "允许重新量化已量化的张量"
self.LEAVE_OUTPUT_WEIGHT = "将保持output.weight不被重新量化"
self.DISABLE_K_QUANT_MIXTURES = "禁用k-quant混合并将所有张量量化为相同类型"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "使用文件中的数据作为量化优化的重要性矩阵"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "对这些张量使用重要性矩阵"
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = "不对这些张量使用重要性矩阵"
self.OUTPUT_TENSOR_TYPE = "输出张量类型:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "对output.weight张量使用此类型"
self.TOKEN_EMBEDDING_TYPE = "词元嵌入类型:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = "对词元嵌入张量使用此类型"
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"将生成与输入相同分片的量化模型"
)
self.OVERRIDE_MODEL_METADATA = "覆盖模型元数据"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix生成的输入数据文件"
self.MODEL_TO_BE_QUANTIZED = "要量化的模型"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "生成的IMatrix的输出路径"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "保存IMatrix的频率"
self.SET_GPU_OFFLOAD_VALUE = "设置GPU卸载值-ngl"
self.STARTING_LORA_CONVERSION = "开始LoRA转换"
self.LORA_INPUT_PATH_REQUIRED = "需要LoRA输入路径。"
self.LORA_OUTPUT_PATH_REQUIRED = "需要LoRA输出路径。"
self.ERROR_STARTING_LORA_CONVERSION = "启动LoRA转换时出错{}"
self.LORA_CONVERSION_TASK_STARTED = "LoRA转换任务已开始。"
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = "浏览LoRA输入目录..."
self.BROWSING_FOR_LORA_OUTPUT_FILE = "浏览LoRA输出文件..."
self.CONVERTING_LORA = "LoRA转换"
self.LORA_CONVERSION_FINISHED = "LoRA转换完成。"
self.LORA_FILE_MOVED = "LoRA文件已从{}移动到{}"
self.LORA_FILE_NOT_FOUND = "未找到LoRA文件{}"
self.ERROR_MOVING_LORA_FILE = "移动LoRA文件时出错{}"
self.MODEL_PATH_REQUIRED = "需要模型路径。"
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = "至少需要一个LoRA适配器。"
self.INVALID_LORA_SCALE_VALUE = "无效的LoRA比例值。"
self.ERROR_STARTING_LORA_EXPORT = "启动LoRA导出时出错{}"
self.LORA_EXPORT_TASK_STARTED = "LoRA导出任务已开始。"
self.EXPORTING_LORA = "导出LoRA..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = "浏览导出LoRA模型文件..."
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = "浏览导出LoRA输出文件..."
self.ADDING_LORA_ADAPTER = "添加LoRA适配器..."
self.DELETING_LORA_ADAPTER = "删除LoRA适配器..."
self.SELECT_LORA_ADAPTER_FILE = "选择LoRA适配器文件"
self.STARTING_LORA_EXPORT = "开始LoRA导出..."
self.SELECT_OUTPUT_TYPE = "选择输出类型GGUF或GGML"
self.BASE_MODEL = "基础模型"
self.SELECT_BASE_MODEL_FILE = "选择基础模型文件GGUF"
self.BASE_MODEL_PATH_REQUIRED = "GGUF输出需要基础模型路径。"
self.BROWSING_FOR_BASE_MODEL_FILE = "浏览基础模型文件..."
self.SELECT_BASE_MODEL_FOLDER = "选择基础模型文件夹包含safetensors"
self.BROWSING_FOR_BASE_MODEL_FOLDER = "浏览基础模型文件夹..."
self.LORA_CONVERSION_FROM_TO = "LoRA转换从{}{}"
self.GENERATING_IMATRIX_FOR = "{}生成IMatrix"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = "IMatrix生成需要模型路径。"
self.NO_ASSET_SELECTED_FOR_CUDA_CHECK = "未选择用于CUDA检查的资源"
self.NO_QUANTIZATION_TYPE_SELECTED = "未选择量化类型。请至少选择一种量化类型。"
self.STARTING_HF_TO_GGUF_CONVERSION = "开始HuggingFace到GGUF转换"
self.MODEL_DIRECTORY_REQUIRED = "需要模型目录"
self.HF_TO_GGUF_CONVERSION_COMMAND = "HF到GGUF转换命令{}"
self.CONVERTING_TO_GGUF = "{}转换为GGUF"
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
"启动HuggingFace到GGUF转换时出错{}"
)
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = "HuggingFace到GGUF转换任务已开始"
class _Spanish(_Localization):
def __init__(self):
super().__init__()
# Interfaz de usuario general
self.WINDOW_TITLE = "AutoGGUF (cuantificador de modelos GGUF automatizado)"
self.RAM_USAGE = "Uso de RAM:"
self.CPU_USAGE = "Uso de CPU:"
self.BACKEND = "Backend de Llama.cpp:"
self.REFRESH_BACKENDS = "Actualizar Backends"
self.MODELS_PATH = "Ruta de los Modelos:"
self.OUTPUT_PATH = "Ruta de Salida:"
self.LOGS_PATH = "Ruta de Registros:"
self.BROWSE = "Examinar"
self.AVAILABLE_MODELS = "Modelos Disponibles:"
self.REFRESH_MODELS = "Actualizar Modelos"
# Importación del Modelo
self.IMPORT_MODEL = "Importar Modelo"
self.SELECT_MODEL_TO_IMPORT = "Seleccionar Modelo para Importar"
self.CONFIRM_IMPORT = "Confirmar Importación"
self.IMPORT_MODEL_CONFIRMATION = "¿Desea importar el modelo {}?"
self.MODEL_IMPORTED_SUCCESSFULLY = "Modelo {} importado correctamente"
self.IMPORTING_MODEL = "Importando modelo"
self.IMPORTED_MODEL_TOOLTIP = "Modelo importado: {}"
# Verificación GGUF
self.INVALID_GGUF_FILE = "Archivo GGUF inválido: {}"
self.SHARDED_MODEL_NAME = "{} (Fragmentado)"
self.IMPORTED_MODEL_TOOLTIP = "Modelo importado: {}"
self.CONCATENATED_FILE_WARNING = "Esta es una parte de un archivo concatenado. No funcionará con llama-quantize; por favor, concatena el archivo primero."
self.CONCATENATED_FILES_FOUND = "Se encontraron {} partes de archivos concatenados. Por favor, concatena los archivos primero."
# Plugins
self.PLUGINS_DIR_NOT_EXIST = (
"El directorio de plugins '{}' no existe. No se cargarán plugins."
)
self.PLUGINS_DIR_NOT_DIRECTORY = (
"'{}' existe pero no es un directorio. No se cargarán plugins."
)
self.PLUGIN_LOADED = "Plugin cargado: {} {}"
self.PLUGIN_INCOMPATIBLE = "El plugin {} {} no es compatible con la versión {} de AutoGGUF. Versiones compatibles: {}"
self.PLUGIN_LOAD_FAILED = "Error al cargar el plugin {}: {}"
self.NO_PLUGINS_LOADED = "No se han cargado plugins."
# Monitoreo de GPU
self.GPU_USAGE = "Uso de GPU:"
self.GPU_USAGE_FORMAT = "GPU: {:.1f}% | VRAM: {:.1f}% ({} MB / {} MB)"
self.GPU_DETAILS = "Detalles de la GPU"
self.GPU_USAGE_OVER_TIME = "Uso de la GPU a lo largo del tiempo"
self.VRAM_USAGE_OVER_TIME = "Uso de la VRAM a lo largo del tiempo"
self.PERCENTAGE = "Porcentaje"
self.TIME = "Tiempo (s)"
self.NO_GPU_DETECTED = "No se ha detectado ninguna GPU"
self.SELECT_GPU = "Seleccionar GPU"
self.AMD_GPU_NOT_SUPPORTED = "GPU AMD detectada, pero no compatible"
# Cuantización
self.QUANTIZATION_TYPE = "Tipo de Cuantización:"
self.ALLOW_REQUANTIZE = "Permitir Recuantización"
self.LEAVE_OUTPUT_TENSOR = "Dejar Tensor de Salida"
self.PURE = "Puro"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Incluir Pesos:"
self.EXCLUDE_WEIGHTS = "Excluir Pesos:"
self.USE_OUTPUT_TENSOR_TYPE = "Usar Tipo de Tensor de Salida"
self.USE_TOKEN_EMBEDDING_TYPE = "Usar Tipo de Incrustación de Tokens"
self.KEEP_SPLIT = "Mantener División"
self.KV_OVERRIDES = "Anulaciones de KV:"
self.ADD_NEW_OVERRIDE = "Agregar nueva anulación"
self.QUANTIZE_MODEL = "Cuantizar Modelo"
self.EXTRA_ARGUMENTS = "Argumentos Adicionales:"
self.EXTRA_ARGUMENTS_LABEL = "Argumentos de línea de comandos adicionales"
self.QUANTIZATION_COMMAND = "Comando de cuantización"
# Ajustes Preestablecidos
self.SAVE_PRESET = "Guardar Ajuste Preestablecido"
self.LOAD_PRESET = "Cargar Ajuste Preestablecido"
# Tareas
self.TASKS = "Tareas:"
# Descarga de llama.cpp
self.DOWNLOAD_LLAMACPP = "Descargar llama.cpp"
self.SELECT_RELEASE = "Seleccionar Versión:"
self.SELECT_ASSET = "Seleccionar Activo:"
self.EXTRACT_CUDA_FILES = "Extraer archivos CUDA"
self.SELECT_CUDA_BACKEND = "Seleccionar Backend CUDA:"
self.DOWNLOAD = "Descargar"
self.REFRESH_RELEASES = "Actualizar Versiones"
# Generación de IMatrix
self.IMATRIX_GENERATION = "Generación de IMatrix"
self.DATA_FILE = "Archivo de Datos:"
self.MODEL = "Modelo:"
self.OUTPUT = "Salida:"
self.OUTPUT_FREQUENCY = "Frecuencia de Salida:"
self.GPU_OFFLOAD = "Descarga de GPU:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Generar IMatrix"
self.CONTEXT_SIZE = "Tamaño del Contexto:"
self.CONTEXT_SIZE_FOR_IMATRIX = (
"Tamaño del contexto para la generación de IMatrix"
)
self.THREADS = "Hilos:"
self.NUMBER_OF_THREADS_FOR_IMATRIX = (
"Número de hilos para la generación de IMatrix"
)
self.IMATRIX_GENERATION_COMMAND = "Comando de generación de IMatrix"
# Conversión de LoRA
self.LORA_CONVERSION = "Conversión de LoRA"
self.LORA_INPUT_PATH = "Ruta de Entrada de LoRA"
self.LORA_OUTPUT_PATH = "Ruta de Salida de LoRA"
self.SELECT_LORA_INPUT_DIRECTORY = "Seleccionar Directorio de Entrada de LoRA"
self.SELECT_LORA_OUTPUT_FILE = "Seleccionar Archivo de Salida de LoRA"
self.CONVERT_LORA = "Convertir LoRA"
self.LORA_CONVERSION_COMMAND = "Comando de conversión de LoRA"
# Exportación de LoRA
self.EXPORT_LORA = "Exportar LoRA"
self.GGML_LORA_ADAPTERS = "Adaptadores LoRA GGML"
self.SELECT_LORA_ADAPTER_FILES = "Seleccionar Archivos de Adaptador LoRA"
self.ADD_ADAPTER = "Agregar Adaptador"
self.DELETE_ADAPTER = "Eliminar"
self.LORA_SCALE = "Escala de LoRA"
self.ENTER_LORA_SCALE_VALUE = (
"Introducir el valor de la escala de LoRA (opcional)"
)
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = (
"Número de hilos para la exportación de LoRA"
)
self.LORA_EXPORT_COMMAND = "Comando de exportación de LoRA"
# Conversión de HuggingFace a GGUF
self.HF_TO_GGUF_CONVERSION = "Conversión de HuggingFace a GGUF"
self.MODEL_DIRECTORY = "Directorio del Modelo:"
self.OUTPUT_FILE = "Archivo de Salida:"
self.OUTPUT_TYPE = "Tipo de Salida:"
self.VOCAB_ONLY = "Sólo Vocabulario"
self.USE_TEMP_FILE = "Usar Archivo Temporal"
self.NO_LAZY_EVALUATION = "Sin Evaluación Perezosa"
self.MODEL_NAME = "Nombre del Modelo:"
self.VERBOSE = "Verboso"
self.SPLIT_MAX_SIZE = "Tamaño Máximo de División:"
self.DRY_RUN = "Ejecución de Prueba"
self.CONVERT_HF_TO_GGUF = "Convertir HF a GGUF"
self.SELECT_HF_MODEL_DIRECTORY = "Seleccionar Directorio del Modelo HuggingFace"
self.BROWSE_FOR_HF_MODEL_DIRECTORY = (
"Buscando el directorio del modelo HuggingFace"
)
self.BROWSE_FOR_HF_TO_GGUF_OUTPUT = (
"Buscando el archivo de salida de HuggingFace a GGUF"
)
# Comprobación de Actualizaciones
self.UPDATE_AVAILABLE = "Actualización Disponible"
self.NEW_VERSION_AVAILABLE = "Hay una nueva versión disponible: {}"
self.DOWNLOAD_NEW_VERSION = "¿Descargar?"
self.ERROR_CHECKING_FOR_UPDATES = "Error al buscar actualizaciones:"
self.CHECKING_FOR_UPDATES = "Buscando actualizaciones"
# Mensajes Generales
self.ERROR = "Error"
self.WARNING = "Advertencia"
self.PROPERTIES = "Propiedades"
self.CANCEL = "Cancelar"
self.RESTART = "Reiniciar"
self.DELETE = "Eliminar"
self.CONFIRM_DELETION = "¿Está seguro de que desea eliminar esta tarea?"
self.TASK_RUNNING_WARNING = (
"Algunas tareas siguen en ejecución. ¿Está seguro de que desea salir?"
)
self.YES = ""
self.NO = "No"
self.COMPLETED = "Completado"
# Tipos de Archivos
self.ALL_FILES = "Todos los Archivos (*)"
self.GGUF_FILES = "Archivos GGUF (*.gguf)"
self.DAT_FILES = "Archivos DAT (*.dat)"
self.JSON_FILES = "Archivos JSON (*.json)"
self.BIN_FILES = "Archivos Binarios (*.bin)"
self.LORA_FILES = "Archivos LoRA (*.bin *.gguf)"
self.GGUF_AND_BIN_FILES = "Archivos GGUF y Binarios (*.gguf *.bin)"
self.SHARDED = "fragmentado"
# Mensajes de Estado
self.DOWNLOAD_COMPLETE = "Descarga Completa"
self.CUDA_EXTRACTION_FAILED = "Error en la Extracción de CUDA"
self.PRESET_SAVED = "Ajuste Preestablecido Guardado"
self.PRESET_LOADED = "Ajuste Preestablecido Cargado"
self.NO_ASSET_SELECTED = "No se ha seleccionado ningún activo"
self.DOWNLOAD_FAILED = "Error en la descarga"
self.NO_BACKEND_SELECTED = "No se ha seleccionado ningún backend"
self.NO_MODEL_SELECTED = "No se ha seleccionado ningún modelo"
self.NO_SUITABLE_CUDA_BACKENDS = "No se han encontrado backends CUDA adecuados"
self.IN_PROGRESS = "En Progreso"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"Binario de llama.cpp descargado y extraído a {0}"
)
self.CUDA_FILES_EXTRACTED = "Archivos CUDA extraídos a"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"No se ha encontrado ningún backend CUDA adecuado para la extracción"
)
self.ERROR_FETCHING_RELEASES = "Error al obtener las versiones: {0}"
self.CONFIRM_DELETION_TITLE = "Confirmar Eliminación"
self.LOG_FOR = "Registro para {0}"
self.FAILED_TO_LOAD_PRESET = "Error al cargar el ajuste preestablecido: {0}"
self.INITIALIZING_AUTOGGUF = "Inicializando la aplicación AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Inicialización de AutoGGUF completada"
self.REFRESHING_BACKENDS = "Actualizando backends"
self.NO_BACKENDS_AVAILABLE = "No hay backends disponibles"
self.FOUND_VALID_BACKENDS = "Se han encontrado {0} backends válidos"
self.SAVING_PRESET = "Guardando ajuste preestablecido"
self.PRESET_SAVED_TO = "Ajuste preestablecido guardado en {0}"
self.LOADING_PRESET = "Cargando ajuste preestablecido"
self.PRESET_LOADED_FROM = "Ajuste preestablecido cargado desde {0}"
self.ADDING_KV_OVERRIDE = "Añadiendo anulación de KV: {0}"
self.SAVING_TASK_PRESET = "Guardando ajuste preestablecido de tarea para {0}"
self.TASK_PRESET_SAVED = "Ajuste Preestablecido de Tarea Guardado"
self.TASK_PRESET_SAVED_TO = "Ajuste preestablecido de tarea guardado en {0}"
self.RESTARTING_TASK = "Reiniciando tarea: {0}"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Descarga finalizada. Extraído a: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"Binario de llama.cpp descargado y extraído a {0}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"No se ha encontrado ningún backend CUDA adecuado para la extracción"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Binario de llama.cpp descargado y extraído a {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Actualizando versiones de llama.cpp"
self.UPDATING_ASSET_LIST = "Actualizando lista de activos"
self.UPDATING_CUDA_OPTIONS = "Actualizando opciones de CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Iniciando descarga de llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Actualizando backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = (
"No se ha seleccionado ningún backend CUDA para la extracción"
)
self.EXTRACTING_CUDA_FILES = "Extrayendo archivos CUDA de {0} a {1}"
self.DOWNLOAD_ERROR = "Error de descarga: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Mostrando menú contextual de la tarea"
self.SHOWING_PROPERTIES_FOR_TASK = "Mostrando propiedades para la tarea: {0}"
self.CANCELLING_TASK = "Cancelando tarea: {0}"
self.CANCELED = "Cancelado"
self.DELETING_TASK = "Eliminando tarea: {0}"
self.LOADING_MODELS = "Cargando modelos"
self.LOADED_MODELS = "Cargados {0} modelos"
self.BROWSING_FOR_MODELS_DIRECTORY = "Buscando el directorio de modelos"
self.SELECT_MODELS_DIRECTORY = "Seleccionar Directorio de Modelos"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Buscando el directorio de salida"
self.SELECT_OUTPUT_DIRECTORY = "Seleccionar Directorio de Salida"
self.BROWSING_FOR_LOGS_DIRECTORY = "Buscando el directorio de registros"
self.SELECT_LOGS_DIRECTORY = "Seleccionar Directorio de Registros"
self.BROWSING_FOR_IMATRIX_FILE = "Buscando el archivo IMatrix"
self.SELECT_IMATRIX_FILE = "Seleccionar Archivo IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Uso de CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validando entradas de cuantización"
self.MODELS_PATH_REQUIRED = "Se requiere la ruta de los modelos"
self.OUTPUT_PATH_REQUIRED = "Se requiere la ruta de salida"
self.LOGS_PATH_REQUIRED = "Se requiere la ruta de registros"
self.STARTING_MODEL_QUANTIZATION = "Iniciando la cuantización del modelo"
self.INPUT_FILE_NOT_EXIST = "El archivo de entrada '{0}' no existe."
self.QUANTIZING_MODEL_TO = "Cuantizando {0} a {1}"
self.QUANTIZATION_TASK_STARTED = "Tarea de cuantización iniciada para {0}"
self.ERROR_STARTING_QUANTIZATION = "Error al iniciar la cuantización: {0}"
self.UPDATING_MODEL_INFO = "Actualizando información del modelo: {0}"
self.TASK_FINISHED = "Tarea finalizada: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Mostrando detalles de la tarea para: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Buscando el archivo de datos de IMatrix"
self.SELECT_DATA_FILE = "Seleccionar Archivo de Datos"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = (
"Buscando el archivo de modelo de IMatrix"
)
self.SELECT_MODEL_FILE = "Seleccionar Archivo de Modelo"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = (
"Buscando el archivo de salida de IMatrix"
)
self.SELECT_OUTPUT_FILE = "Seleccionar Archivo de Salida"
self.STARTING_IMATRIX_GENERATION = "Iniciando la generación de IMatrix"
self.BACKEND_PATH_NOT_EXIST = "La ruta del backend no existe: {0}"
self.GENERATING_IMATRIX = "Generando IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Error al iniciar la generación de IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Tarea de generación de IMatrix iniciada"
self.ERROR_MESSAGE = "Error: {0}"
self.TASK_ERROR = "Error de tarea: {0}"
self.APPLICATION_CLOSING = "Cerrando la aplicación"
self.APPLICATION_CLOSED = "Aplicación cerrada"
self.SELECT_QUANTIZATION_TYPE = "Seleccione el tipo de cuantización"
self.ALLOWS_REQUANTIZING = (
"Permite recuantizar tensores que ya han sido cuantizados"
)
self.LEAVE_OUTPUT_WEIGHT = "Dejará output.weight sin (re)cuantizar"
self.DISABLE_K_QUANT_MIXTURES = "Desactivar las mezclas k-quant y cuantizar todos los tensores al mismo tipo"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Utilizar los datos del archivo como matriz de importancia para las optimizaciones de cuantización"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Utilizar la matriz de importancia para estos tensores"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"No utilizar la matriz de importancia para estos tensores"
)
self.OUTPUT_TENSOR_TYPE = "Tipo de Tensor de Salida:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Utilizar este tipo para el tensor output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Tipo de Incrustación de Tokens:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Utilizar este tipo para el tensor de incrustaciones de tokens"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Generará el modelo cuantizado en los mismos fragmentos que la entrada"
)
self.OVERRIDE_MODEL_METADATA = "Sobrescribir los metadatos del modelo"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Archivo de datos de entrada para la generación de IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modelo a cuantizar"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Ruta de salida para la IMatrix generada"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Con qué frecuencia guardar la IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Establecer el valor de descarga de la GPU (-ngl)"
self.STARTING_LORA_CONVERSION = "Iniciando la conversión de LoRA"
self.LORA_INPUT_PATH_REQUIRED = "Se requiere la ruta de entrada de LoRA."
self.LORA_OUTPUT_PATH_REQUIRED = "Se requiere la ruta de salida de LoRA."
self.ERROR_STARTING_LORA_CONVERSION = (
"Error al iniciar la conversión de LoRA: {}"
)
self.LORA_CONVERSION_TASK_STARTED = "Tarea de conversión de LoRA iniciada."
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = (
"Buscando el directorio de entrada de LoRA..."
)
self.BROWSING_FOR_LORA_OUTPUT_FILE = "Buscando el archivo de salida de LoRA..."
self.CONVERTING_LORA = "Conversión de LoRA"
self.LORA_CONVERSION_FINISHED = "Conversión de LoRA finalizada."
self.LORA_FILE_MOVED = "Archivo LoRA movido de {} a {}."
self.LORA_FILE_NOT_FOUND = "Archivo LoRA no encontrado: {}."
self.ERROR_MOVING_LORA_FILE = "Error al mover el archivo LoRA: {}"
self.MODEL_PATH_REQUIRED = "Se requiere la ruta del modelo."
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = (
"Se requiere al menos un adaptador LoRA."
)
self.INVALID_LORA_SCALE_VALUE = "Valor de escala de LoRA no válido."
self.ERROR_STARTING_LORA_EXPORT = "Error al iniciar la exportación de LoRA: {}"
self.LORA_EXPORT_TASK_STARTED = "Tarea de exportación de LoRA iniciada."
self.EXPORTING_LORA = "Exportando LoRA..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = (
"Buscando el archivo de modelo de exportación de LoRA..."
)
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = (
"Buscando el archivo de salida de exportación de LoRA..."
)
self.ADDING_LORA_ADAPTER = "Añadiendo adaptador LoRA..."
self.DELETING_LORA_ADAPTER = "Eliminando adaptador LoRA..."
self.SELECT_LORA_ADAPTER_FILE = "Seleccionar archivo de adaptador LoRA"
self.STARTING_LORA_EXPORT = "Iniciando la exportación de LoRA..."
self.SELECT_OUTPUT_TYPE = "Seleccionar tipo de salida (GGUF o GGML)"
self.BASE_MODEL = "Modelo base"
self.SELECT_BASE_MODEL_FILE = "Seleccionar archivo de modelo base (GGUF)"
self.BASE_MODEL_PATH_REQUIRED = (
"Se requiere la ruta del modelo base para la salida GGUF."
)
self.BROWSING_FOR_BASE_MODEL_FILE = "Buscando el archivo de modelo base..."
self.SELECT_BASE_MODEL_FOLDER = (
"Seleccionar carpeta de modelo base (que contenga safetensors)"
)
self.BROWSING_FOR_BASE_MODEL_FOLDER = "Buscando la carpeta de modelo base..."
self.LORA_CONVERSION_FROM_TO = "Conversión de LoRA de {} a {}"
self.GENERATING_IMATRIX_FOR = "Generando IMatrix para {}"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = (
"Se requiere la ruta del modelo para la generación de IMatrix."
)
self.NO_ASSET_SELECTED_FOR_CUDA_CHECK = (
"No se ha seleccionado ningún activo para la comprobación de CUDA"
)
self.NO_QUANTIZATION_TYPE_SELECTED = "No se ha seleccionado ningún tipo de cuantización. Por favor, seleccione al menos un tipo de cuantización."
self.STARTING_HF_TO_GGUF_CONVERSION = (
"Iniciando la conversión de HuggingFace a GGUF"
)
self.MODEL_DIRECTORY_REQUIRED = "Se requiere el directorio del modelo"
self.HF_TO_GGUF_CONVERSION_COMMAND = "Comando de conversión de HF a GGUF: {}"
self.CONVERTING_TO_GGUF = "Convirtiendo {} a GGUF"
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
"Error al iniciar la conversión de HuggingFace a GGUF: {}"
)
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = (
"Tarea de conversión de HuggingFace a GGUF iniciada"
)
class _Hindi(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (स्वचालित GGUF मॉडल क्वांटाइज़र)"
self.RAM_USAGE = "RAM उपयोग:"
self.CPU_USAGE = "CPU उपयोग:"
self.BACKEND = "Llama.cpp बैकएंड:"
self.REFRESH_BACKENDS = "बैकएंड रीफ्रेश करें"
self.MODELS_PATH = "मॉडल पथ:"
self.OUTPUT_PATH = "आउटपुट पथ:"
self.LOGS_PATH = "लॉग पथ:"
self.BROWSE = "ब्राउज़ करें"
self.AVAILABLE_MODELS = "उपलब्ध मॉडल:"
self.QUANTIZATION_TYPE = "क्वांटाइजेशन प्रकार:"
self.ALLOW_REQUANTIZE = "पुनः क्वांटाइज़ करने की अनुमति दें"
self.LEAVE_OUTPUT_TENSOR = "आउटपुट टेंसर छोड़ें"
self.PURE = "शुद्ध"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "वेट शामिल करें:"
self.EXCLUDE_WEIGHTS = "वेट बाहर रखें:"
self.USE_OUTPUT_TENSOR_TYPE = "आउटपुट टेंसर प्रकार का उपयोग करें"
self.USE_TOKEN_EMBEDDING_TYPE = "टोकन एम्बेडिंग प्रकार का उपयोग करें"
self.KEEP_SPLIT = "विभाजन रखें"
self.KV_OVERRIDES = "KV ओवरराइड:"
self.ADD_NEW_OVERRIDE = "नया ओवरराइड जोड़ें"
self.QUANTIZE_MODEL = "मॉडल क्वांटाइज़ करें"
self.SAVE_PRESET = "प्रीसेट सहेजें"
self.LOAD_PRESET = "प्रीसेट लोड करें"
self.TASKS = "कार्य:"
self.DOWNLOAD_LLAMACPP = "llama.cpp डाउनलोड करें"
self.SELECT_RELEASE = "रिलीज़ चुनें:"
self.SELECT_ASSET = "एसेट चुनें:"
self.EXTRACT_CUDA_FILES = "CUDA फ़ाइलें निकालें"
self.SELECT_CUDA_BACKEND = "CUDA बैकएंड चुनें:"
self.DOWNLOAD = "डाउनलोड करें"
self.IMATRIX_GENERATION = "IMatrix उत्पादन"
self.DATA_FILE = "डेटा फ़ाइल:"
self.MODEL = "मॉडल:"
self.OUTPUT = "आउटपुट:"
self.OUTPUT_FREQUENCY = "आउटपुट आवृत्ति:"
self.GPU_OFFLOAD = "GPU ऑफलोड:"
self.AUTO = "स्वचालित"
self.GENERATE_IMATRIX = "IMatrix उत्पन्न करें"
self.ERROR = "त्रुटि"
self.WARNING = "चेतावनी"
self.PROPERTIES = "गुण"
self.WINDOW_TITLE = "AutoGGUF (स्वचालित GGUF मॉडल क्वांटाइज़र)"
self.RAM_USAGE = "RAM उपयोग:"
self.CPU_USAGE = "CPU उपयोग:"
self.BACKEND = "Llama.cpp बैकएंड:"
self.REFRESH_BACKENDS = "बैकएंड रीफ्रेश करें"
self.MODELS_PATH = "मॉडल पथ:"
self.OUTPUT_PATH = "आउटपुट पथ:"
self.LOGS_PATH = "लॉग पथ:"
self.BROWSE = "ब्राउज़ करें"
self.AVAILABLE_MODELS = "उपलब्ध मॉडल:"
self.QUANTIZATION_TYPE = "क्वांटाइजेशन प्रकार:"
self.ALLOW_REQUANTIZE = "पुनः क्वांटाइज़ करने की अनुमति दें"
self.LEAVE_OUTPUT_TENSOR = "आउटपुट टेंसर छोड़ें"
self.PURE = "शुद्ध"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "वेट शामिल करें:"
self.EXCLUDE_WEIGHTS = "वेट बाहर रखें:"
self.USE_OUTPUT_TENSOR_TYPE = "आउटपुट टेंसर प्रकार का उपयोग करें"
self.USE_TOKEN_EMBEDDING_TYPE = "टोकन एम्बेडिंग प्रकार का उपयोग करें"
self.KEEP_SPLIT = "विभाजन रखें"
self.KV_OVERRIDES = "KV ओवरराइड:"
self.ADD_NEW_OVERRIDE = "नया ओवरराइड जोड़ें"
self.QUANTIZE_MODEL = "मॉडल क्वांटाइज़ करें"
self.SAVE_PRESET = "प्रीसेट सहेजें"
self.LOAD_PRESET = "प्रीसेट लोड करें"
self.TASKS = "कार्य:"
self.DOWNLOAD_LLAMACPP = "llama.cpp डाउनलोड करें"
self.SELECT_RELEASE = "रिलीज़ चुनें:"
self.SELECT_ASSET = "एसेट चुनें:"
self.EXTRACT_CUDA_FILES = "CUDA फ़ाइलें निकालें"
self.SELECT_CUDA_BACKEND = "CUDA बैकएंड चुनें:"
self.DOWNLOAD = "डाउनलोड करें"
self.IMATRIX_GENERATION = "IMatrix उत्पादन"
self.DATA_FILE = "डेटा फ़ाइल:"
self.MODEL = "मॉडल:"
self.OUTPUT = "आउटपुट:"
self.OUTPUT_FREQUENCY = "आउटपुट आवृत्ति:"
self.GPU_OFFLOAD = "GPU ऑफलोड:"
self.AUTO = "स्वचालित"
self.GENERATE_IMATRIX = "IMatrix उत्पन्न करें"
self.ERROR = "त्रुटि"
self.WARNING = "चेतावनी"
self.PROPERTIES = "गुण"
self.CANCEL = "रद्द करें"
self.RESTART = "पुनः आरंभ करें"
self.DELETE = "हटाएं"
self.CONFIRM_DELETION = "क्या आप वाकई इस कार्य को हटाना चाहते हैं?"
self.TASK_RUNNING_WARNING = (
"कुछ कार्य अभी भी चल रहे हैं। क्या आप वाकई बाहर निकलना चाहते हैं?"
)
self.YES = "हां"
self.NO = "नहीं"
self.DOWNLOAD_COMPLETE = "डाउनलोड पूरा हुआ"
self.CUDA_EXTRACTION_FAILED = "CUDA निष्कर्षण विफल"
self.PRESET_SAVED = "प्रीसेट सहेजा गया"
self.PRESET_LOADED = "प्रीसेट लोड किया गया"
self.NO_ASSET_SELECTED = "कोई एसेट चयनित नहीं"
self.DOWNLOAD_FAILED = "डाउनलोड विफल"
self.NO_BACKEND_SELECTED = "कोई बैकएंड चयनित नहीं"
self.NO_MODEL_SELECTED = "कोई मॉडल चयनित नहीं"
self.REFRESH_RELEASES = "रिलीज़ रीफ्रेश करें"
self.NO_SUITABLE_CUDA_BACKENDS = "कोई उपयुक्त CUDA बैकएंड नहीं मिला"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई\nCUDA फ़ाइलें {1} में निकाली गईं"
)
self.CUDA_FILES_EXTRACTED = "CUDA फ़ाइलें निकाली गईं"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"निष्कर्षण के लिए कोई उपयुक्त CUDA बैकएंड नहीं मिला"
)
self.ERROR_FETCHING_RELEASES = "रिलीज़ प्राप्त करने में त्रुटि: {0}"
self.CONFIRM_DELETION_TITLE = "हटाने की पुष्टि करें"
self.LOG_FOR = "{0} के लिए लॉग"
self.ALL_FILES = "सभी फ़ाइलें (*)"
self.GGUF_FILES = "GGUF फ़ाइलें (*.gguf)"
self.DAT_FILES = "DAT फ़ाइलें (*.dat)"
self.JSON_FILES = "JSON फ़ाइलें (*.json)"
self.FAILED_LOAD_PRESET = "प्रीसेट लोड करने में विफल: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUF एप्लिकेशन प्रारंभ हो रहा है"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF प्रारंभीकरण पूरा हुआ"
self.REFRESHING_BACKENDS = "बैकएंड रीफ्रेश हो रहे हैं"
self.NO_BACKENDS_AVAILABLE = "कोई बैकएंड उपलब्ध नहीं"
self.FOUND_VALID_BACKENDS = "{0} मान्य बैकएंड मिले"
self.SAVING_PRESET = "प्रीसेट सहेजा जा रहा है"
self.PRESET_SAVED_TO = "प्रीसेट {0} में सहेजा गया"
self.LOADING_PRESET = "प्रीसेट लोड हो रहा है"
self.PRESET_LOADED_FROM = "{0} से प्रीसेट लोड किया गया"
self.ADDING_KV_OVERRIDE = "KV ओवरराइड जोड़ा जा रहा है: {0}"
self.SAVING_TASK_PRESET = "{0} के लिए कार्य प्रीसेट सहेजा जा रहा है"
self.TASK_PRESET_SAVED = "कार्य प्रीसेट सहेजा गया"
self.TASK_PRESET_SAVED_TO = "कार्य प्रीसेट {0} में सहेजा गया"
self.RESTARTING_TASK = "कार्य पुनः आरंभ हो रहा है: {0}"
self.IN_PROGRESS = "प्रगति में"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "डाउनलोड समाप्त। निकाला गया: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई\nCUDA फ़ाइलें {1} में निकाली गईं"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"निष्कर्षण के लिए कोई उपयुक्त CUDA बैकएंड नहीं मिला"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp बाइनरी डाउनलोड और {0} में निकाली गई"
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cpp रिलीज़ रीफ्रेश हो रही हैं"
self.UPDATING_ASSET_LIST = "एसेट सूची अपडेट हो रही है"
self.UPDATING_CUDA_OPTIONS = "CUDA विकल्प अपडेट हो रहे हैं"
self.STARTING_LLAMACPP_DOWNLOAD = "llama.cpp डाउनलोड शुरू हो रहा है"
self.UPDATING_CUDA_BACKENDS = "CUDA बैकएंड अपडेट हो रहे हैं"
self.NO_CUDA_BACKEND_SELECTED = "निष्कर्षण के लिए कोई CUDA बैकएंड चयनित नहीं"
self.EXTRACTING_CUDA_FILES = "{0} से {1} में CUDA फ़ाइलें निकाली जा रही हैं"
self.DOWNLOAD_ERROR = "डाउनलोड त्रुटि: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "कार्य संदर्भ मेनू दिखाया जा रहा है"
self.SHOWING_PROPERTIES_FOR_TASK = "कार्य के लिए गुण दिखाए जा रहे हैं: {0}"
self.CANCELLING_TASK = "कार्य रद्द किया जा रहा है: {0}"
self.CANCELED = "रद्द किया गया"
self.DELETING_TASK = "कार्य हटाया जा रहा है: {0}"
self.LOADING_MODELS = "मॉडल लोड हो रहे हैं"
self.LOADED_MODELS = "{0} मॉडल लोड किए गए"
self.BROWSING_FOR_MODELS_DIRECTORY = "मॉडल निर्देशिका के लिए ब्राउज़ किया जा रहा है"
self.SELECT_MODELS_DIRECTORY = "मॉडल निर्देशिका चुनें"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "आउटपुट निर्देशिका के लिए ब्राउज़ किया जा रहा है"
self.SELECT_OUTPUT_DIRECTORY = "आउटपुट निर्देशिका चुनें"
self.BROWSING_FOR_LOGS_DIRECTORY = "लॉग निर्देशिका के लिए ब्राउज़ किया जा रहा है"
self.SELECT_LOGS_DIRECTORY = "लॉग निर्देशिका चुनें"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix फ़ाइल के लिए ब्राउज़ किया जा रहा है"
self.SELECT_IMATRIX_FILE = "IMatrix फ़ाइल चुनें"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU उपयोग: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "क्वांटाइजेशन इनपुट सत्यापित किए जा रहे हैं"
self.MODELS_PATH_REQUIRED = "मॉडल पथ आवश्यक है"
self.OUTPUT_PATH_REQUIRED = "आउटपुट पथ आवश्यक है"
self.LOGS_PATH_REQUIRED = "लॉग पथ आवश्यक है"
self.STARTING_MODEL_QUANTIZATION = "मॉडल क्वांटाइजेशन शुरू हो रहा है"
self.INPUT_FILE_NOT_EXIST = "इनपुट फ़ाइल '{0}' मौजूद नहीं है।"
self.QUANTIZING_MODEL_TO = "{0} को {1} में क्वांटाइज़ किया जा रहा है"
self.QUANTIZATION_TASK_STARTED = "{0} के लिए क्वांटाइजेशन कार्य शुरू हुआ"
self.ERROR_STARTING_QUANTIZATION = "क्वांटाइजेशन शुरू करने में त्रुटि: {0}"
self.UPDATING_MODEL_INFO = "मॉडल जानकारी अपडेट हो रही है: {0}"
self.TASK_FINISHED = "कार्य समाप्त: {0}"
self.SHOWING_TASK_DETAILS_FOR = "कार्य विवरण दिखाए जा रहे हैं: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = (
"IMatrix डेटा फ़ाइल के लिए ब्राउज़ किया जा रहा है"
)
self.SELECT_DATA_FILE = "डेटा फ़ाइल चुनें"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = (
"IMatrix मॉडल फ़ाइल के लिए ब्राउज़ किया जा रहा है"
)
self.SELECT_MODEL_FILE = "मॉडल फ़ाइल चुनें"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = (
"IMatrix आउटपुट फ़ाइल के लिए ब्राउज़ किया जा रहा है"
)
self.SELECT_OUTPUT_FILE = "आउटपुट फ़ाइल चुनें"
self.STARTING_IMATRIX_GENERATION = "IMatrix उत्पादन शुरू हो रहा है"
self.BACKEND_PATH_NOT_EXIST = "बैकएंड पथ मौजूद नहीं है: {0}"
self.GENERATING_IMATRIX = "IMatrix उत्पन्न किया जा रहा है"
self.ERROR_STARTING_IMATRIX_GENERATION = "IMatrix उत्पादन शुरू करने में त्रुटि: {0}"
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix उत्पादन कार्य शुरू हुआ"
self.ERROR_MESSAGE = "त्रुटि: {0}"
self.TASK_ERROR = "कार्य त्रुटि: {0}"
self.APPLICATION_CLOSING = "एप्लिकेशन बंद हो रहा है"
self.APPLICATION_CLOSED = "एप्लिकेशन बंद हो गया"
self.SELECT_QUANTIZATION_TYPE = "क्वांटाइजेशन प्रकार चुनें"
self.ALLOWS_REQUANTIZING = (
"पहले से क्वांटाइज़ किए गए टेंसर को पुनः क्वांटाइज़ करने की अनुमति देता है"
)
self.LEAVE_OUTPUT_WEIGHT = "output.weight को अक्वांटाइज़ (या पुनः क्वांटाइज़) छोड़ देगा"
self.DISABLE_K_QUANT_MIXTURES = (
"k-quant मिश्रण को अक्षम करें और सभी टेंसर को एक ही प्रकार में क्वांटाइज़ करें"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"क्वांट अनुकूलन के लिए फ़ाइल में डेटा को महत्व मैट्रिक्स के रूप में उपयोग करें"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "इन टेंसर के लिए महत्व मैट्रिक्स का उपयोग करें"
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"इन टेंसर के लिए महत्व मैट्रिक्स का उपयोग न करें"
)
self.OUTPUT_TENSOR_TYPE = "आउटपुट टेंसर प्रकार:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"output.weight टेंसर के लिए इस प्रकार का उपयोग करें"
)
self.TOKEN_EMBEDDING_TYPE = "टोकन एम्बेडिंग प्रकार:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"टोकन एम्बेडिंग टेंसर के लिए इस प्रकार का उपयोग करें"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"इनपुट के समान शार्ड्स में क्वांटाइज़ किए गए मॉडल को उत्पन्न करेगा"
)
self.OVERRIDE_MODEL_METADATA = "मॉडल मेटाडेटा को ओवरराइड करें"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix उत्पादन के लिए इनपुट डेटा फ़ाइल"
self.MODEL_TO_BE_QUANTIZED = "क्वांटाइज़ किए जाने वाला मॉडल"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "उत्पन्न IMatrix के लिए आउटपुट पथ"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "IMatrix को कितनी बार सहेजना है"
self.SET_GPU_OFFLOAD_VALUE = "GPU ऑफलोड मान सेट करें (-ngl)"
self.COMPLETED = "पूरा हुआ"
self.REFRESH_MODELS = "मॉडल रीफ्रेश करें"
class _Russian(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (автоматический квантователь моделей GGUF)"
self.RAM_USAGE = "Использование ОЗУ:"
self.CPU_USAGE = "Использование ЦП:"
self.BACKEND = "Бэкенд Llama.cpp:"
self.REFRESH_BACKENDS = "Обновить бэкенды"
self.MODELS_PATH = "Путь к моделям:"
self.OUTPUT_PATH = "Путь вывода:"
self.LOGS_PATH = "Путь к логам:"
self.BROWSE = "Обзор"
self.AVAILABLE_MODELS = "Доступные модели:"
self.QUANTIZATION_TYPE = "Тип квантования:"
self.ALLOW_REQUANTIZE = "Разрешить переквантование"
self.LEAVE_OUTPUT_TENSOR = "Оставить выходной тензор"
self.PURE = "Чистый"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Включить веса:"
self.EXCLUDE_WEIGHTS = "Исключить веса:"
self.USE_OUTPUT_TENSOR_TYPE = "Использовать тип выходного тензора"
self.USE_TOKEN_EMBEDDING_TYPE = "Использовать тип встраивания токенов"
self.KEEP_SPLIT = "Сохранить разделение"
self.KV_OVERRIDES = "KV переопределения:"
self.ADD_NEW_OVERRIDE = "Добавить новое переопределение"
self.QUANTIZE_MODEL = "Квантовать модель"
self.SAVE_PRESET = "Сохранить пресет"
self.LOAD_PRESET = "Загрузить пресет"
self.TASKS = "Задачи:"
self.DOWNLOAD_LLAMACPP = "Скачать llama.cpp"
self.SELECT_RELEASE = "Выбрать релиз:"
self.SELECT_ASSET = "Выбрать актив:"
self.EXTRACT_CUDA_FILES = "Извлечь файлы CUDA"
self.SELECT_CUDA_BACKEND = "Выбрать бэкенд CUDA:"
self.DOWNLOAD = "Скачать"
self.IMATRIX_GENERATION = "Генерация IMatrix"
self.DATA_FILE = "Файл данных:"
self.MODEL = "Модель:"
self.OUTPUT = "Вывод:"
self.OUTPUT_FREQUENCY = "Частота вывода:"
self.GPU_OFFLOAD = "Разгрузка GPU:"
self.AUTO = "Авто"
self.GENERATE_IMATRIX = "Сгенерировать IMatrix"
self.ERROR = "Ошибка"
self.WARNING = "Предупреждение"
self.PROPERTIES = "Свойства"
self.CANCEL = "Отмена"
self.RESTART = "Перезапуск"
self.DELETE = "Удалить"
self.CONFIRM_DELETION = "Вы уверены, что хотите удалить эту задачу?"
self.TASK_RUNNING_WARNING = (
"Некоторые задачи все еще выполняются. Вы уверены, что хотите выйти?"
)
self.YES = "Да"
self.NO = "Нет"
self.DOWNLOAD_COMPLETE = "Загрузка завершена"
self.CUDA_EXTRACTION_FAILED = "Извлечение CUDA не удалось"
self.PRESET_SAVED = "Пресет сохранен"
self.PRESET_LOADED = "Пресет загружен"
self.NO_ASSET_SELECTED = "Актив не выбран"
self.DOWNLOAD_FAILED = "Загрузка не удалась"
self.NO_BACKEND_SELECTED = "Бэкенд не выбран"
self.NO_MODEL_SELECTED = "Модель не выбрана"
self.REFRESH_RELEASES = "Обновить релизы"
self.NO_SUITABLE_CUDA_BACKENDS = "Подходящие бэкенды CUDA не найдены"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Бинарный файл llama.cpp загружен и извлечен в {0}\nФайлы CUDA извлечены в {1}"
self.CUDA_FILES_EXTRACTED = "Файлы CUDA извлечены в"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Подходящий бэкенд CUDA для извлечения не найден"
)
self.ERROR_FETCHING_RELEASES = "Ошибка получения релизов: {0}"
self.CONFIRM_DELETION_TITLE = "Подтвердить удаление"
self.LOG_FOR = "Лог для {0}"
self.ALL_FILES = "Все файлы (*)"
self.GGUF_FILES = "Файлы GGUF (*.gguf)"
self.DAT_FILES = "Файлы DAT (*.dat)"
self.JSON_FILES = "Файлы JSON (*.json)"
self.FAILED_LOAD_PRESET = "Не удалось загрузить пресет: {0}"
self.INITIALIZING_AUTOGGUF = "Инициализация приложения AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Инициализация AutoGGUF завершена"
self.REFRESHING_BACKENDS = "Обновление бэкендов"
self.NO_BACKENDS_AVAILABLE = "Бэкенды недоступны"
self.FOUND_VALID_BACKENDS = "Найдено {0} действительных бэкендов"
self.SAVING_PRESET = "Сохранение пресета"
self.PRESET_SAVED_TO = "Пресет сохранен в {0}"
self.LOADING_PRESET = "Загрузка пресета"
self.PRESET_LOADED_FROM = "Пресет загружен из {0}"
self.ADDING_KV_OVERRIDE = "Добавление KV переопределения: {0}"
self.SAVING_TASK_PRESET = "Сохранение пресета задачи для {0}"
self.TASK_PRESET_SAVED = "Пресет задачи сохранен"
self.TASK_PRESET_SAVED_TO = "Пресет задачи сохранен в {0}"
self.RESTARTING_TASK = "Перезапуск задачи: {0}"
self.IN_PROGRESS = "В процессе"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Загрузка завершена. Извлечено в: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Бинарный файл llama.cpp загружен и извлечен в {0}\nФайлы CUDA извлечены в {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Подходящий бэкенд CUDA для извлечения не найден"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Бинарный файл llama.cpp загружен и извлечен в {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Обновление релизов llama.cpp"
self.UPDATING_ASSET_LIST = "Обновление списка активов"
self.UPDATING_CUDA_OPTIONS = "Обновление параметров CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Начало загрузки llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Обновление бэкендов CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Бэкенд CUDA для извлечения не выбран"
self.EXTRACTING_CUDA_FILES = "Извлечение файлов CUDA из {0} в {1}"
self.DOWNLOAD_ERROR = "Ошибка загрузки: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Отображение контекстного меню задачи"
self.SHOWING_PROPERTIES_FOR_TASK = "Отображение свойств задачи: {0}"
self.CANCELLING_TASK = "Отмена задачи: {0}"
self.CANCELED = "Отменено"
self.DELETING_TASK = "Удаление задачи: {0}"
self.LOADING_MODELS = "Загрузка моделей"
self.LOADED_MODELS = "Загружено {0} моделей"
self.BROWSING_FOR_MODELS_DIRECTORY = "Поиск каталога моделей"
self.SELECT_MODELS_DIRECTORY = "Выберите каталог моделей"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Поиск выходного каталога"
self.SELECT_OUTPUT_DIRECTORY = "Выберите выходной каталог"
self.BROWSING_FOR_LOGS_DIRECTORY = "Поиск каталога логов"
self.SELECT_LOGS_DIRECTORY = "Выберите каталог логов"
self.BROWSING_FOR_IMATRIX_FILE = "Поиск файла IMatrix"
self.SELECT_IMATRIX_FILE = "Выберите файл IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} МБ / {2} МБ)"
self.CPU_USAGE_FORMAT = "Использование ЦП: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Проверка входных данных квантования"
self.MODELS_PATH_REQUIRED = "Требуется путь к моделям"
self.OUTPUT_PATH_REQUIRED = "Требуется путь вывода"
self.LOGS_PATH_REQUIRED = "Требуется путь к логам"
self.STARTING_MODEL_QUANTIZATION = "Начало квантования модели"
self.INPUT_FILE_NOT_EXIST = "Входной файл '{0}' не существует."
self.QUANTIZING_MODEL_TO = "Квантование {0} в {1}"
self.QUANTIZATION_TASK_STARTED = "Задача квантования запущена для {0}"
self.ERROR_STARTING_QUANTIZATION = "Ошибка запуска квантования: {0}"
self.UPDATING_MODEL_INFO = "Обновление информации о модели: {0}"
self.TASK_FINISHED = "Задача завершена: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Отображение сведений о задаче для: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Поиск файла данных IMatrix"
self.SELECT_DATA_FILE = "Выберите файл данных"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Поиск файла модели IMatrix"
self.SELECT_MODEL_FILE = "Выберите файл модели"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Поиск выходного файла IMatrix"
self.SELECT_OUTPUT_FILE = "Выберите выходной файл"
self.STARTING_IMATRIX_GENERATION = "Начало генерации IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Путь бэкенда не существует: {0}"
self.GENERATING_IMATRIX = "Генерация IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = "Ошибка запуска генерации IMatrix: {0}"
self.IMATRIX_GENERATION_TASK_STARTED = "Задача генерации IMatrix запущена"
self.ERROR_MESSAGE = "Ошибка: {0}"
self.TASK_ERROR = "Ошибка задачи: {0}"
self.APPLICATION_CLOSING = "Закрытие приложения"
self.APPLICATION_CLOSED = "Приложение закрыто"
self.SELECT_QUANTIZATION_TYPE = "Выберите тип квантования"
self.ALLOWS_REQUANTIZING = (
"Позволяет переквантовать тензоры, которые уже были квантованы"
)
self.LEAVE_OUTPUT_WEIGHT = "Оставит output.weight не (пере)квантованным"
self.DISABLE_K_QUANT_MIXTURES = (
"Отключить k-квантовые смеси и квантовать все тензоры к одному типу"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Использовать данные в файле как матрицу важности для оптимизации квантования"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Использовать матрицу важности для этих тензоров"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Не использовать матрицу важности для этих тензоров"
)
self.OUTPUT_TENSOR_TYPE = "Тип выходного тензора:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Использовать этот тип для тензора output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Тип встраивания токенов:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Использовать этот тип для тензора встраивания токенов"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = "Будет генерировать квантованную модель в тех же шардах, что и входные данные"
self.OVERRIDE_MODEL_METADATA = "Переопределить метаданные модели"
self.INPUT_DATA_FILE_FOR_IMATRIX = "Входной файл данных для генерации IMatrix"
self.MODEL_TO_BE_QUANTIZED = "Модель для квантования"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Выходной путь для сгенерированного IMatrix"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Как часто сохранять IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Установить значение разгрузки GPU (-ngl)"
self.COMPLETED = "Завершено"
self.REFRESH_MODELS = "Обновить модели"
class _Ukrainian(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (автоматичний квантувальник моделей GGUF)"
self.RAM_USAGE = "Використання ОЗУ:"
self.CPU_USAGE = "Використання ЦП:"
self.BACKEND = "Бекенд Llama.cpp:"
self.REFRESH_BACKENDS = "Оновити бекенди"
self.MODELS_PATH = "Шлях до моделей:"
self.OUTPUT_PATH = "Шлях виводу:"
self.LOGS_PATH = "Шлях до логів:"
self.BROWSE = "Огляд"
self.AVAILABLE_MODELS = "Доступні моделі:"
self.QUANTIZATION_TYPE = "Тип квантування:"
self.ALLOW_REQUANTIZE = "Дозволити переквантування"
self.LEAVE_OUTPUT_TENSOR = "Залишити вихідний тензор"
self.PURE = "Чистий"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Включити ваги:"
self.EXCLUDE_WEIGHTS = "Виключити ваги:"
self.USE_OUTPUT_TENSOR_TYPE = "Використовувати тип вихідного тензора"
self.USE_TOKEN_EMBEDDING_TYPE = "Використовувати тип вбудовування токенів"
self.KEEP_SPLIT = "Зберегти розділення"
self.KV_OVERRIDES = "KV перевизначення:"
self.ADD_NEW_OVERRIDE = "Додати нове перевизначення"
self.QUANTIZE_MODEL = "Квантувати модель"
self.SAVE_PRESET = "Зберегти пресет"
self.LOAD_PRESET = "Завантажити пресет"
self.TASKS = "Завдання:"
self.DOWNLOAD_LLAMACPP = "Завантажити llama.cpp"
self.SELECT_RELEASE = "Вибрати реліз:"
self.SELECT_ASSET = "Вибрати актив:"
self.EXTRACT_CUDA_FILES = "Витягнути файли CUDA"
self.SELECT_CUDA_BACKEND = "Вибрати бекенд CUDA:"
self.DOWNLOAD = "Завантажити"
self.IMATRIX_GENERATION = "Генерація IMatrix"
self.DATA_FILE = "Файл даних:"
self.MODEL = "Модель:"
self.OUTPUT = "Вивід:"
self.OUTPUT_FREQUENCY = "Частота виводу:"
self.GPU_OFFLOAD = "Розвантаження GPU:"
self.AUTO = "Авто"
self.GENERATE_IMATRIX = "Згенерувати IMatrix"
self.ERROR = "Помилка"
self.WARNING = "Попередження"
self.PROPERTIES = "Властивості"
self.CANCEL = "Скасувати"
self.RESTART = "Перезапустити"
self.DELETE = "Видалити"
self.CONFIRM_DELETION = "Ви впевнені, що хочете видалити це завдання?"
self.TASK_RUNNING_WARNING = (
"Деякі завдання все ще виконуються. Ви впевнені, що хочете вийти?"
)
self.YES = "Так"
self.NO = "Ні"
self.DOWNLOAD_COMPLETE = "Завантаження завершено"
self.CUDA_EXTRACTION_FAILED = "Витягнення CUDA не вдалося"
self.PRESET_SAVED = "Пресет збережено"
self.PRESET_LOADED = "Пресет завантажено"
self.NO_ASSET_SELECTED = "Актив не вибрано"
self.DOWNLOAD_FAILED = "Завантаження не вдалося"
self.NO_BACKEND_SELECTED = "Бекенд не вибрано"
self.NO_MODEL_SELECTED = "Модель не вибрано"
self.REFRESH_RELEASES = "Оновити релізи"
self.NO_SUITABLE_CUDA_BACKENDS = "Підходящі бекенди CUDA не знайдено"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Бінарний файл llama.cpp завантажено та витягнуто в {0}\nФайли CUDA витягнуто в {1}"
self.CUDA_FILES_EXTRACTED = "Файли CUDA витягнуто в"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Підходящий бекенд CUDA для витягнення не знайдено"
)
self.ERROR_FETCHING_RELEASES = "Помилка отримання релізів: {0}"
self.CONFIRM_DELETION_TITLE = "Підтвердити видалення"
self.LOG_FOR = "Лог для {0}"
self.ALL_FILES = "Всі файли (*)"
self.GGUF_FILES = "Файли GGUF (*.gguf)"
self.DAT_FILES = "Файли DAT (*.dat)"
self.JSON_FILES = "Файли JSON (*.json)"
self.FAILED_LOAD_PRESET = "Не вдалося завантажити пресет: {0}"
self.INITIALIZING_AUTOGGUF = "Ініціалізація програми AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Ініціалізація AutoGGUF завершена"
self.REFRESHING_BACKENDS = "Оновлення бекендів"
self.NO_BACKENDS_AVAILABLE = "Бекенди недоступні"
self.FOUND_VALID_BACKENDS = "Знайдено {0} дійсних бекендів"
self.SAVING_PRESET = "Збереження пресета"
self.PRESET_SAVED_TO = "Пресет збережено в {0}"
self.LOADING_PRESET = "Завантаження пресета"
self.PRESET_LOADED_FROM = "Пресет завантажено з {0}"
self.ADDING_KV_OVERRIDE = "Додавання KV перевизначення: {0}"
self.SAVING_TASK_PRESET = "Збереження пресета завдання для {0}"
self.TASK_PRESET_SAVED = "Пресет завдання збережено"
self.TASK_PRESET_SAVED_TO = "Пресет завдання збережено в {0}"
self.RESTARTING_TASK = "Перезапуск завдання: {0}"
self.IN_PROGRESS = "В процесі"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Завантаження завершено. Витягнуто в: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Бінарний файл llama.cpp завантажено та витягнуто в {0}\nФайли CUDA витягнуто в {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Підходящий бекенд CUDA для витягнення не знайдено"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Бінарний файл llama.cpp завантажено та витягнуто в {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Оновлення релізів llama.cpp"
self.UPDATING_ASSET_LIST = "Оновлення списку активів"
self.UPDATING_CUDA_OPTIONS = "Оновлення параметрів CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Початок завантаження llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Оновлення бекендів CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Бекенд CUDA для витягнення не вибрано"
self.EXTRACTING_CUDA_FILES = "Витягнення файлів CUDA з {0} в {1}"
self.DOWNLOAD_ERROR = "Помилка завантаження: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Відображення контекстного меню завдання"
self.SHOWING_PROPERTIES_FOR_TASK = "Відображення властивостей завдання: {0}"
self.CANCELLING_TASK = "Скасування завдання: {0}"
self.CANCELED = "Скасовано"
self.DELETING_TASK = "Видалення завдання: {0}"
self.LOADING_MODELS = "Завантаження моделей"
self.LOADED_MODELS = "Завантажено {0} моделей"
self.BROWSING_FOR_MODELS_DIRECTORY = "Пошук каталогу моделей"
self.SELECT_MODELS_DIRECTORY = "Виберіть каталог моделей"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Пошук вихідного каталогу"
self.SELECT_OUTPUT_DIRECTORY = "Виберіть вихідний каталог"
self.BROWSING_FOR_LOGS_DIRECTORY = "Пошук каталогу логів"
self.SELECT_LOGS_DIRECTORY = "Виберіть каталог логів"
self.BROWSING_FOR_IMATRIX_FILE = "Пошук файлу IMatrix"
self.SELECT_IMATRIX_FILE = "Виберіть файл IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} МБ / {2} МБ)"
self.CPU_USAGE_FORMAT = "Використання ЦП: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Перевірка вхідних даних квантування"
self.MODELS_PATH_REQUIRED = "Потрібен шлях до моделей"
self.OUTPUT_PATH_REQUIRED = "Потрібен шлях виводу"
self.LOGS_PATH_REQUIRED = "Потрібен шлях до логів"
self.STARTING_MODEL_QUANTIZATION = "Початок квантування моделі"
self.INPUT_FILE_NOT_EXIST = "Вхідний файл '{0}' не існує."
self.QUANTIZING_MODEL_TO = "Квантування {0} в {1}"
self.QUANTIZATION_TASK_STARTED = "Завдання квантування запущено для {0}"
self.ERROR_STARTING_QUANTIZATION = "Помилка запуску квантування: {0}"
self.UPDATING_MODEL_INFO = "Оновлення інформації про модель: {0}"
self.TASK_FINISHED = "Завдання завершено: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Відображення відомостей про завдання для: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Пошук файлу даних IMatrix"
self.SELECT_DATA_FILE = "Виберіть файл даних"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Пошук файлу моделі IMatrix"
self.SELECT_MODEL_FILE = "Виберіть файл моделі"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Пошук вихідного файлу IMatrix"
self.SELECT_OUTPUT_FILE = "Виберіть вихідний файл"
self.STARTING_IMATRIX_GENERATION = "Початок генерації IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Шлях бекенда не існує: {0}"
self.GENERATING_IMATRIX = "Генерація IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Помилка запуску генерації IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Завдання генерації IMatrix запущено"
self.ERROR_MESSAGE = "Помилка: {0}"
self.TASK_ERROR = "Помилка завдання: {0}"
self.APPLICATION_CLOSING = "Закриття програми"
self.APPLICATION_CLOSED = "Програма закрита"
self.SELECT_QUANTIZATION_TYPE = "Виберіть тип квантування"
self.ALLOWS_REQUANTIZING = (
"Дозволяє переквантувати тензори, які вже були квантовані"
)
self.LEAVE_OUTPUT_WEIGHT = "Залишить output.weight не (пере)квантованим"
self.DISABLE_K_QUANT_MIXTURES = (
"Вимкнути k-квантові суміші та квантувати всі тензори до одного типу"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Використовувати дані у файлі як матрицю важливості для оптимізації квантування"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Використовувати матрицю важливості для цих тензорів"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Не використовувати матрицю важливості для цих тензорів"
)
self.OUTPUT_TENSOR_TYPE = "Тип вихідного тензора:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Використовувати цей тип для тензора output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Тип вбудовування токенів:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Використовувати цей тип для тензора вбудовування токенів"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Генеруватиме квантовану модель у тих самих шардах, що й вхідні дані"
)
self.OVERRIDE_MODEL_METADATA = "Перевизначити метадані моделі"
self.INPUT_DATA_FILE_FOR_IMATRIX = "Вхідний файл даних для генерації IMatrix"
self.MODEL_TO_BE_QUANTIZED = "Модель для квантування"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Вихідний шлях для згенерованого IMatrix"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Як часто зберігати IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Встановити значення розвантаження GPU (-ngl)"
self.COMPLETED = "Завершено"
self.REFRESH_MODELS = "Оновити моделі"
class _Japanese(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (自動GGUFモデル量子化器)"
self.RAM_USAGE = "RAM使用量:"
self.CPU_USAGE = "CPU使用率:"
self.BACKEND = "Llama.cppバックエンド:"
self.REFRESH_BACKENDS = "バックエンドを更新"
self.MODELS_PATH = "モデルパス:"
self.OUTPUT_PATH = "出力パス:"
self.LOGS_PATH = "ログパス:"
self.BROWSE = "参照"
self.AVAILABLE_MODELS = "利用可能なモデル:"
self.QUANTIZATION_TYPE = "量子化タイプ:"
self.ALLOW_REQUANTIZE = "再量子化を許可"
self.LEAVE_OUTPUT_TENSOR = "出力テンソルを残す"
self.PURE = "純粋"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "重みを含める:"
self.EXCLUDE_WEIGHTS = "重みを含めない:"
self.USE_OUTPUT_TENSOR_TYPE = "出力テンソルタイプを使用"
self.USE_TOKEN_EMBEDDING_TYPE = "トークン埋め込みタイプを使用"
self.KEEP_SPLIT = "分割を維持"
self.KV_OVERRIDES = "KVオーバーライド:"
self.ADD_NEW_OVERRIDE = "新しいオーバーライドを追加"
self.QUANTIZE_MODEL = "モデルを量子化"
self.SAVE_PRESET = "プリセットを保存"
self.LOAD_PRESET = "プリセットを読み込む"
self.TASKS = "タスク:"
self.DOWNLOAD_LLAMACPP = "llama.cppをダウンロード"
self.SELECT_RELEASE = "リリースを選択:"
self.SELECT_ASSET = "アセットを選択:"
self.EXTRACT_CUDA_FILES = "CUDAファイルを抽出"
self.SELECT_CUDA_BACKEND = "CUDAバックエンドを選択:"
self.DOWNLOAD = "ダウンロード"
self.IMATRIX_GENERATION = "IMatrix生成"
self.DATA_FILE = "データファイル:"
self.MODEL = "モデル:"
self.OUTPUT = "出力:"
self.OUTPUT_FREQUENCY = "出力頻度:"
self.GPU_OFFLOAD = "GPUオフロード:"
self.AUTO = "自動"
self.GENERATE_IMATRIX = "IMatrixを生成"
self.ERROR = "エラー"
self.WARNING = "警告"
self.PROPERTIES = "プロパティ"
self.CANCEL = "キャンセル"
self.RESTART = "再起動"
self.DELETE = "削除"
self.CONFIRM_DELETION = "このタスクを削除してもよろしいですか?"
self.TASK_RUNNING_WARNING = (
"一部のタスクはまだ実行中です。終了してもよろしいですか?"
)
self.YES = "はい"
self.NO = "いいえ"
self.DOWNLOAD_COMPLETE = "ダウンロード完了"
self.CUDA_EXTRACTION_FAILED = "CUDA抽出に失敗しました"
self.PRESET_SAVED = "プリセットが保存されました"
self.PRESET_LOADED = "プリセットが読み込まれました"
self.NO_ASSET_SELECTED = "アセットが選択されていません"
self.DOWNLOAD_FAILED = "ダウンロードに失敗しました"
self.NO_BACKEND_SELECTED = "バックエンドが選択されていません"
self.NO_MODEL_SELECTED = "モデルが選択されていません"
self.REFRESH_RELEASES = "リリースを更新"
self.NO_SUITABLE_CUDA_BACKENDS = "適切なCUDAバックエンドが見つかりませんでした"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cppバイナリがダウンロードされ、{0}に抽出されました\nCUDAファイルは{1}に抽出されました"
self.CUDA_FILES_EXTRACTED = "CUDAファイルはに抽出されました"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"抽出に適したCUDAバックエンドが見つかりませんでした"
)
self.ERROR_FETCHING_RELEASES = "リリースの取得中にエラーが発生しました: {0}"
self.CONFIRM_DELETION_TITLE = "削除の確認"
self.LOG_FOR = "{0}のログ"
self.ALL_FILES = "すべてのファイル (*)"
self.GGUF_FILES = "GGUFファイル (*.gguf)"
self.DAT_FILES = "DATファイル (*.dat)"
self.JSON_FILES = "JSONファイル (*.json)"
self.FAILED_LOAD_PRESET = "プリセットの読み込みに失敗しました: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUFアプリケーションを初期化しています"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUFの初期化が完了しました"
self.REFRESHING_BACKENDS = "バックエンドを更新しています"
self.NO_BACKENDS_AVAILABLE = "利用可能なバックエンドがありません"
self.FOUND_VALID_BACKENDS = "{0}個の有効なバックエンドが見つかりました"
self.SAVING_PRESET = "プリセットを保存しています"
self.PRESET_SAVED_TO = "プリセットは{0}に保存されました"
self.LOADING_PRESET = "プリセットを読み込んでいます"
self.PRESET_LOADED_FROM = "{0}からプリセットが読み込まれました"
self.ADDING_KV_OVERRIDE = "KVオーバーライドを追加しています: {0}"
self.SAVING_TASK_PRESET = "{0}のタスクプリセットを保存しています"
self.TASK_PRESET_SAVED = "タスクプリセットが保存されました"
self.TASK_PRESET_SAVED_TO = "タスクプリセットは{0}に保存されました"
self.RESTARTING_TASK = "タスクを再起動しています: {0}"
self.IN_PROGRESS = "処理中"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "ダウンロードが完了しました。抽出先: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cppバイナリがダウンロードされ、{0}に抽出されました\nCUDAファイルは{1}に抽出されました"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"抽出に適したCUDAバックエンドが見つかりませんでした"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cppバイナリがダウンロードされ、{0}に抽出されました"
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cppリリースを更新しています"
self.UPDATING_ASSET_LIST = "アセットリストを更新しています"
self.UPDATING_CUDA_OPTIONS = "CUDAオプションを更新しています"
self.STARTING_LLAMACPP_DOWNLOAD = "llama.cppのダウンロードを開始しています"
self.UPDATING_CUDA_BACKENDS = "CUDAバックエンドを更新しています"
self.NO_CUDA_BACKEND_SELECTED = "抽出にCUDAバックエンドが選択されていません"
self.EXTRACTING_CUDA_FILES = "{0}から{1}にCUDAファイルを抽出しています"
self.DOWNLOAD_ERROR = "ダウンロードエラー: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "タスクコンテキストメニューを表示しています"
self.SHOWING_PROPERTIES_FOR_TASK = "タスクのプロパティを表示しています: {0}"
self.CANCELLING_TASK = "タスクをキャンセルしています: {0}"
self.CANCELED = "キャンセル済み"
self.DELETING_TASK = "タスクを削除しています: {0}"
self.LOADING_MODELS = "モデルを読み込んでいます"
self.LOADED_MODELS = "{0}個のモデルが読み込まれました"
self.BROWSING_FOR_MODELS_DIRECTORY = "モデルディレクトリを参照しています"
self.SELECT_MODELS_DIRECTORY = "モデルディレクトリを選択"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "出力ディレクトリを参照しています"
self.SELECT_OUTPUT_DIRECTORY = "出力ディレクトリを選択"
self.BROWSING_FOR_LOGS_DIRECTORY = "ログディレクトリを参照しています"
self.SELECT_LOGS_DIRECTORY = "ログディレクトリを選択"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrixファイルを参照しています"
self.SELECT_IMATRIX_FILE = "IMatrixファイルを選択"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU使用率: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "量子化入力を検証しています"
self.MODELS_PATH_REQUIRED = "モデルパスが必要です"
self.OUTPUT_PATH_REQUIRED = "出力パスが必要です"
self.LOGS_PATH_REQUIRED = "ログパスが必要です"
self.STARTING_MODEL_QUANTIZATION = "モデルの量子化を開始しています"
self.INPUT_FILE_NOT_EXIST = "入力ファイル '{0}' は存在しません。"
self.QUANTIZING_MODEL_TO = "{0}{1} に量子化しています"
self.QUANTIZATION_TASK_STARTED = "{0} の量子化タスクが開始されました"
self.ERROR_STARTING_QUANTIZATION = "量子化の開始中にエラーが発生しました: {0}"
self.UPDATING_MODEL_INFO = "モデル情報を更新しています: {0}"
self.TASK_FINISHED = "タスクが完了しました: {0}"
self.SHOWING_TASK_DETAILS_FOR = "タスクの詳細を表示しています: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrixデータファイルを参照しています"
self.SELECT_DATA_FILE = "データファイルを選択"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrixモデルファイルを参照しています"
self.SELECT_MODEL_FILE = "モデルファイルを選択"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "IMatrix出力ファイルを参照しています"
self.SELECT_OUTPUT_FILE = "出力ファイルを選択"
self.STARTING_IMATRIX_GENERATION = "IMatrixの生成を開始しています"
self.BACKEND_PATH_NOT_EXIST = "バックエンドパスが存在しません: {0}"
self.GENERATING_IMATRIX = "IMatrixを生成しています"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"IMatrixの生成を開始中にエラーが発生しました: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix生成タスクが開始されました"
self.ERROR_MESSAGE = "エラー: {0}"
self.TASK_ERROR = "タスクエラー: {0}"
self.APPLICATION_CLOSING = "アプリケーションを終了しています"
self.APPLICATION_CLOSED = "アプリケーションが終了しました"
self.SELECT_QUANTIZATION_TYPE = "量子化タイプを選択してください"
self.ALLOWS_REQUANTIZING = (
"すでに量子化されているテンソルの再量子化を許可します"
)
self.LEAVE_OUTPUT_WEIGHT = "output.weightは量子化されません"
self.DISABLE_K_QUANT_MIXTURES = (
"k-quant混合を無効にし、すべてのテンソルを同じタイプに量子化します"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"量子化最適化の重要度マトリックスとしてファイル内のデータを使用します"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"これらのテンソルに重要度マトリックスを使用します"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"これらのテンソルに重要度マトリックスを使用しません"
)
self.OUTPUT_TENSOR_TYPE = "出力テンソルタイプ:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"output.weightテンソルにこのタイプを使用します"
)
self.TOKEN_EMBEDDING_TYPE = "トークン埋め込みタイプ:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"トークン埋め込みテンソルにこのタイプを使用します"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"入力と同じシャードで量子化されたモデルを生成します"
)
self.OVERRIDE_MODEL_METADATA = "モデルメタデータを上書きする"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix生成用の入力データファイル"
self.MODEL_TO_BE_QUANTIZED = "量子化されるモデル"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "生成されたIMatrixの出力パス"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "IMatrixを保存する頻度"
self.SET_GPU_OFFLOAD_VALUE = "GPUオフロード値を設定 (-ngl)"
self.COMPLETED = "完了しました"
self.REFRESH_MODELS = "モデルを更新"
class _German(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (automatisierter GGUF-Modellquantisierer)"
self.RAM_USAGE = "RAM-Nutzung:"
self.CPU_USAGE = "CPU-Auslastung:"
self.BACKEND = "Llama.cpp-Backend:"
self.REFRESH_BACKENDS = "Backends aktualisieren"
self.MODELS_PATH = "Modelle Pfad:"
self.OUTPUT_PATH = "Ausgabepfad:"
self.LOGS_PATH = "Log-Pfad:"
self.BROWSE = "Durchsuchen"
self.AVAILABLE_MODELS = "Verfügbare Modelle:"
self.QUANTIZATION_TYPE = "Quantisierungstyp:"
self.ALLOW_REQUANTIZE = "Requantisierung zulassen"
self.LEAVE_OUTPUT_TENSOR = "Ausgabetensor belassen"
self.PURE = "Rein"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Gewichte einschließen:"
self.EXCLUDE_WEIGHTS = "Gewichte ausschließen:"
self.USE_OUTPUT_TENSOR_TYPE = "Ausgabetensortyp verwenden"
self.USE_TOKEN_EMBEDDING_TYPE = "Token-Einbettungstyp verwenden"
self.KEEP_SPLIT = "Aufteilung beibehalten"
self.KV_OVERRIDES = "KV-Überschreibungen:"
self.ADD_NEW_OVERRIDE = "Neue Überschreibung hinzufügen"
self.QUANTIZE_MODEL = "Modell quantisieren"
self.SAVE_PRESET = "Preset speichern"
self.LOAD_PRESET = "Preset laden"
self.TASKS = "Aufgaben:"
self.DOWNLOAD_LLAMACPP = "llama.cpp herunterladen"
self.SELECT_RELEASE = "Release auswählen:"
self.SELECT_ASSET = "Asset auswählen:"
self.EXTRACT_CUDA_FILES = "CUDA-Dateien extrahieren"
self.SELECT_CUDA_BACKEND = "CUDA-Backend auswählen:"
self.DOWNLOAD = "Herunterladen"
self.IMATRIX_GENERATION = "IMatrix-Generierung"
self.DATA_FILE = "Datendatei:"
self.MODEL = "Modell:"
self.OUTPUT = "Ausgabe:"
self.OUTPUT_FREQUENCY = "Ausgabefrequenz:"
self.GPU_OFFLOAD = "GPU-Offload:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "IMatrix generieren"
self.ERROR = "Fehler"
self.WARNING = "Warnung"
self.PROPERTIES = "Eigenschaften"
self.CANCEL = "Abbrechen"
self.RESTART = "Neustart"
self.DELETE = "Löschen"
self.CONFIRM_DELETION = (
"Sind Sie sicher, dass Sie diese Aufgabe löschen möchten?"
)
self.TASK_RUNNING_WARNING = (
"Einige Aufgaben laufen noch. Möchten Sie wirklich beenden?"
)
self.YES = "Ja"
self.NO = "Nein"
self.DOWNLOAD_COMPLETE = "Download abgeschlossen"
self.CUDA_EXTRACTION_FAILED = "CUDA-Extraktion fehlgeschlagen"
self.PRESET_SAVED = "Preset gespeichert"
self.PRESET_LOADED = "Preset geladen"
self.NO_ASSET_SELECTED = "Kein Asset ausgewählt"
self.DOWNLOAD_FAILED = "Download fehlgeschlagen"
self.NO_BACKEND_SELECTED = "Kein Backend ausgewählt"
self.NO_MODEL_SELECTED = "Kein Modell ausgewählt"
self.REFRESH_RELEASES = "Releases aktualisieren"
self.NO_SUITABLE_CUDA_BACKENDS = "Keine geeigneten CUDA-Backends gefunden"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp-Binärdatei heruntergeladen und extrahiert nach {0}\nCUDA-Dateien extrahiert nach {1}"
self.CUDA_FILES_EXTRACTED = "CUDA-Dateien extrahiert nach"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Kein geeignetes CUDA-Backend für die Extraktion gefunden"
)
self.ERROR_FETCHING_RELEASES = "Fehler beim Abrufen der Releases: {0}"
self.CONFIRM_DELETION_TITLE = "Löschen bestätigen"
self.LOG_FOR = "Log für {0}"
self.ALL_FILES = "Alle Dateien (*)"
self.GGUF_FILES = "GGUF-Dateien (*.gguf)"
self.DAT_FILES = "DAT-Dateien (*.dat)"
self.JSON_FILES = "JSON-Dateien (*.json)"
self.FAILED_LOAD_PRESET = "Preset konnte nicht geladen werden: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUF-Anwendung wird initialisiert"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF-Initialisierung abgeschlossen"
self.REFRESHING_BACKENDS = "Backends werden aktualisiert"
self.NO_BACKENDS_AVAILABLE = "Keine Backends verfügbar"
self.FOUND_VALID_BACKENDS = "{0} gültige Backends gefunden"
self.SAVING_PRESET = "Preset wird gespeichert"
self.PRESET_SAVED_TO = "Preset gespeichert unter {0}"
self.LOADING_PRESET = "Preset wird geladen"
self.PRESET_LOADED_FROM = "Preset von {0} geladen"
self.ADDING_KV_OVERRIDE = "KV-Überschreibung wird hinzugefügt: {0}"
self.SAVING_TASK_PRESET = "Task-Preset für {0} wird gespeichert"
self.TASK_PRESET_SAVED = "Task-Preset gespeichert"
self.TASK_PRESET_SAVED_TO = "Task-Preset gespeichert unter {0}"
self.RESTARTING_TASK = "Aufgabe wird neu gestartet: {0}"
self.IN_PROGRESS = "In Bearbeitung"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"Download abgeschlossen. Extrahiert nach: {0}"
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp-Binärdatei heruntergeladen und extrahiert nach {0}\nCUDA-Dateien extrahiert nach {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Kein geeignetes CUDA-Backend für die Extraktion gefunden"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp-Binärdatei heruntergeladen und extrahiert nach {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cpp-Releases werden aktualisiert"
self.UPDATING_ASSET_LIST = "Asset-Liste wird aktualisiert"
self.UPDATING_CUDA_OPTIONS = "CUDA-Optionen werden aktualisiert"
self.STARTING_LLAMACPP_DOWNLOAD = "Download von llama.cpp wird gestartet"
self.UPDATING_CUDA_BACKENDS = "CUDA-Backends werden aktualisiert"
self.NO_CUDA_BACKEND_SELECTED = (
"Kein CUDA-Backend für die Extraktion ausgewählt"
)
self.EXTRACTING_CUDA_FILES = "CUDA-Dateien werden von {0} nach {1} extrahiert"
self.DOWNLOAD_ERROR = "Download-Fehler: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Kontextmenü der Aufgabe wird angezeigt"
self.SHOWING_PROPERTIES_FOR_TASK = (
"Eigenschaften für Aufgabe werden angezeigt: {0}"
)
self.CANCELLING_TASK = "Aufgabe wird abgebrochen: {0}"
self.CANCELED = "Abgebrochen"
self.DELETING_TASK = "Aufgabe wird gelöscht: {0}"
self.LOADING_MODELS = "Modelle werden geladen"
self.LOADED_MODELS = "{0} Modelle geladen"
self.BROWSING_FOR_MODELS_DIRECTORY = "Modelle-Verzeichnis wird durchsucht"
self.SELECT_MODELS_DIRECTORY = "Modelle-Verzeichnis auswählen"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Ausgabeverzeichnis wird durchsucht"
self.SELECT_OUTPUT_DIRECTORY = "Ausgabeverzeichnis auswählen"
self.BROWSING_FOR_LOGS_DIRECTORY = "Log-Verzeichnis wird durchsucht"
self.SELECT_LOGS_DIRECTORY = "Log-Verzeichnis auswählen"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix-Datei wird durchsucht"
self.SELECT_IMATRIX_FILE = "IMatrix-Datei auswählen"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU-Auslastung: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Quantisierungseingaben werden validiert"
self.MODELS_PATH_REQUIRED = "Modelle-Pfad ist erforderlich"
self.OUTPUT_PATH_REQUIRED = "Ausgabepfad ist erforderlich"
self.LOGS_PATH_REQUIRED = "Log-Pfad ist erforderlich"
self.STARTING_MODEL_QUANTIZATION = "Modellquantisierung wird gestartet"
self.INPUT_FILE_NOT_EXIST = "Die Eingabedatei '{0}' existiert nicht."
self.QUANTIZING_MODEL_TO = "Quantisierung von {0} zu {1}"
self.QUANTIZATION_TASK_STARTED = "Quantisierungsaufgabe für {0} gestartet"
self.ERROR_STARTING_QUANTIZATION = "Fehler beim Starten der Quantisierung: {0}"
self.UPDATING_MODEL_INFO = "Modellinformationen werden aktualisiert: {0}"
self.TASK_FINISHED = "Aufgabe abgeschlossen: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Aufgabendetails werden angezeigt für: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrix-Datendatei wird durchsucht"
self.SELECT_DATA_FILE = "Datendatei auswählen"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrix-Modelldatei wird durchsucht"
self.SELECT_MODEL_FILE = "Modelldatei auswählen"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "IMatrix-Ausgabedatei wird durchsucht"
self.SELECT_OUTPUT_FILE = "Ausgabedatei auswählen"
self.STARTING_IMATRIX_GENERATION = "IMatrix-Generierung wird gestartet"
self.BACKEND_PATH_NOT_EXIST = "Backend-Pfad existiert nicht: {0}"
self.GENERATING_IMATRIX = "IMatrix wird generiert"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Fehler beim Starten der IMatrix-Generierung: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix-Generierungsaufgabe gestartet"
self.ERROR_MESSAGE = "Fehler: {0}"
self.TASK_ERROR = "Aufgabenfehler: {0}"
self.APPLICATION_CLOSING = "Anwendung wird geschlossen"
self.APPLICATION_CLOSED = "Anwendung geschlossen"
self.SELECT_QUANTIZATION_TYPE = "Wählen Sie den Quantisierungstyp aus"
self.ALLOWS_REQUANTIZING = "Ermöglicht die Requantisierung von Tensoren, die bereits quantisiert wurden"
self.LEAVE_OUTPUT_WEIGHT = "Lässt output.weight nicht (re)quantisiert"
self.DISABLE_K_QUANT_MIXTURES = "Deaktivieren Sie k-Quant-Mischungen und quantisieren Sie alle Tensoren auf denselben Typ"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Verwenden Sie Daten in der Datei als Wichtigkeitsmatrix für Quant-Optimierungen"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Verwenden Sie die Wichtigkeitsmatrix für diese Tensoren"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Verwenden Sie die Wichtigkeitsmatrix nicht für diese Tensoren"
)
self.OUTPUT_TENSOR_TYPE = "Ausgabetensortyp:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Verwenden Sie diesen Typ für den output.weight-Tensor"
)
self.TOKEN_EMBEDDING_TYPE = "Token-Einbettungstyp:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Verwenden Sie diesen Typ für den Token-Einbettungstensor"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Generiert ein quantisiertes Modell in denselben Shards wie die Eingabe"
)
self.OVERRIDE_MODEL_METADATA = "Modellmetadaten überschreiben"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Eingabedatendatei für die IMatrix-Generierung"
)
self.MODEL_TO_BE_QUANTIZED = "Zu quantisierendes Modell"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Ausgabepfad für die generierte IMatrix"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Wie oft die IMatrix gespeichert werden soll"
self.SET_GPU_OFFLOAD_VALUE = "GPU-Offload-Wert festlegen (-ngl)"
self.COMPLETED = "Abgeschlossen"
self.REFRESH_MODELS = "Modelle aktualisieren"
class _Portuguese(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Quantizador Automático de Modelos GGUF)"
self.RAM_USAGE = "Uso de RAM:"
self.CPU_USAGE = "Uso da CPU:"
self.BACKEND = "Backend do Llama.cpp:"
self.REFRESH_BACKENDS = "Atualizar Backends"
self.MODELS_PATH = "Caminho dos Modelos:"
self.OUTPUT_PATH = "Caminho de Saída:"
self.LOGS_PATH = "Caminho dos Logs:"
self.BROWSE = "Navegar"
self.AVAILABLE_MODELS = "Modelos Disponíveis:"
self.QUANTIZATION_TYPE = "Tipo de Quantização:"
self.ALLOW_REQUANTIZE = "Permitir Requantização"
self.LEAVE_OUTPUT_TENSOR = "Manter Tensor de Saída"
self.PURE = "Puro"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Incluir Pesos:"
self.EXCLUDE_WEIGHTS = "Excluir Pesos:"
self.USE_OUTPUT_TENSOR_TYPE = "Usar Tipo de Tensor de Saída"
self.USE_TOKEN_EMBEDDING_TYPE = "Usar Tipo de Incorporação de Token"
self.KEEP_SPLIT = "Manter Divisão"
self.KV_OVERRIDES = "Substituições KV:"
self.ADD_NEW_OVERRIDE = "Adicionar Nova Substituição"
self.QUANTIZE_MODEL = "Quantizar Modelo"
self.SAVE_PRESET = "Salvar Predefinição"
self.LOAD_PRESET = "Carregar Predefinição"
self.TASKS = "Tarefas:"
self.DOWNLOAD_LLAMACPP = "Baixar llama.cpp"
self.SELECT_RELEASE = "Selecionar Versão:"
self.SELECT_ASSET = "Selecionar Ativo:"
self.EXTRACT_CUDA_FILES = "Extrair Arquivos CUDA"
self.SELECT_CUDA_BACKEND = "Selecionar Backend CUDA:"
self.DOWNLOAD = "Baixar"
self.IMATRIX_GENERATION = "Geração de IMatrix"
self.DATA_FILE = "Arquivo de Dados:"
self.MODEL = "Modelo:"
self.OUTPUT = "Saída:"
self.OUTPUT_FREQUENCY = "Frequência de Saída:"
self.GPU_OFFLOAD = "Offload da GPU:"
self.AUTO = "Automático"
self.GENERATE_IMATRIX = "Gerar IMatrix"
self.ERROR = "Erro"
self.WARNING = "Aviso"
self.PROPERTIES = "Propriedades"
self.CANCEL = "Cancelar"
self.RESTART = "Reiniciar"
self.DELETE = "Excluir"
self.CONFIRM_DELETION = "Tem certeza de que deseja excluir esta tarefa?"
self.TASK_RUNNING_WARNING = (
"Algumas tarefas ainda estão em execução. Tem certeza de que deseja sair?"
)
self.YES = "Sim"
self.NO = "Não"
self.DOWNLOAD_COMPLETE = "Download Concluído"
self.CUDA_EXTRACTION_FAILED = "Falha na Extração do CUDA"
self.PRESET_SAVED = "Predefinição Salva"
self.PRESET_LOADED = "Predefinição Carregada"
self.NO_ASSET_SELECTED = "Nenhum ativo selecionado"
self.DOWNLOAD_FAILED = "Falha no download"
self.NO_BACKEND_SELECTED = "Nenhum backend selecionado"
self.NO_MODEL_SELECTED = "Nenhum modelo selecionado"
self.REFRESH_RELEASES = "Atualizar Versões"
self.NO_SUITABLE_CUDA_BACKENDS = "Nenhum backend CUDA adequado encontrado"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Binário llama.cpp baixado e extraído para {0}\nArquivos CUDA extraídos para {1}"
self.CUDA_FILES_EXTRACTED = "Arquivos CUDA extraídos para"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nenhum backend CUDA adequado encontrado para extração"
)
self.ERROR_FETCHING_RELEASES = "Erro ao buscar versões: {0}"
self.CONFIRM_DELETION_TITLE = "Confirmar Exclusão"
self.LOG_FOR = "Log para {0}"
self.ALL_FILES = "Todos os Arquivos (*)"
self.GGUF_FILES = "Arquivos GGUF (*.gguf)"
self.DAT_FILES = "Arquivos DAT (*.dat)"
self.JSON_FILES = "Arquivos JSON (*.json)"
self.FAILED_LOAD_PRESET = "Falha ao carregar a predefinição: {0}"
self.INITIALIZING_AUTOGGUF = "Inicializando o aplicativo AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Inicialização do AutoGGUF concluída"
self.REFRESHING_BACKENDS = "Atualizando backends"
self.NO_BACKENDS_AVAILABLE = "Nenhum backend disponível"
self.FOUND_VALID_BACKENDS = "{0} backends válidos encontrados"
self.SAVING_PRESET = "Salvando predefinição"
self.PRESET_SAVED_TO = "Predefinição salva em {0}"
self.LOADING_PRESET = "Carregando predefinição"
self.PRESET_LOADED_FROM = "Predefinição carregada de {0}"
self.ADDING_KV_OVERRIDE = "Adicionando substituição KV: {0}"
self.SAVING_TASK_PRESET = "Salvando predefinição de tarefa para {0}"
self.TASK_PRESET_SAVED = "Predefinição de Tarefa Salva"
self.TASK_PRESET_SAVED_TO = "Predefinição de tarefa salva em {0}"
self.RESTARTING_TASK = "Reiniciando tarefa: {0}"
self.IN_PROGRESS = "Em Andamento"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download concluído. Extraído para: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Binário llama.cpp baixado e extraído para {0}\nArquivos CUDA extraídos para {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nenhum backend CUDA adequado encontrado para extração"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Binário llama.cpp baixado e extraído para {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Atualizando versões do llama.cpp"
self.UPDATING_ASSET_LIST = "Atualizando lista de ativos"
self.UPDATING_CUDA_OPTIONS = "Atualizando opções CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Iniciando download do llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Atualizando backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Nenhum backend CUDA selecionado para extração"
self.EXTRACTING_CUDA_FILES = "Extraindo arquivos CUDA de {0} para {1}"
self.DOWNLOAD_ERROR = "Erro de download: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Exibindo menu de contexto da tarefa"
self.SHOWING_PROPERTIES_FOR_TASK = "Exibindo propriedades para a tarefa: {0}"
self.CANCELLING_TASK = "Cancelando tarefa: {0}"
self.CANCELED = "Cancelado"
self.DELETING_TASK = "Excluindo tarefa: {0}"
self.LOADING_MODELS = "Carregando modelos"
self.LOADED_MODELS = "{0} modelos carregados"
self.BROWSING_FOR_MODELS_DIRECTORY = "Navegando pelo diretório de modelos"
self.SELECT_MODELS_DIRECTORY = "Selecionar Diretório de Modelos"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Navegando pelo diretório de saída"
self.SELECT_OUTPUT_DIRECTORY = "Selecionar Diretório de Saída"
self.BROWSING_FOR_LOGS_DIRECTORY = "Navegando pelo diretório de logs"
self.SELECT_LOGS_DIRECTORY = "Selecionar Diretório de Logs"
self.BROWSING_FOR_IMATRIX_FILE = "Navegando pelo arquivo IMatrix"
self.SELECT_IMATRIX_FILE = "Selecionar Arquivo IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Uso da CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validando entradas de quantização"
self.MODELS_PATH_REQUIRED = "O caminho dos modelos é obrigatório"
self.OUTPUT_PATH_REQUIRED = "O caminho de saída é obrigatório"
self.LOGS_PATH_REQUIRED = "O caminho dos logs é obrigatório"
self.STARTING_MODEL_QUANTIZATION = "Iniciando a quantização do modelo"
self.INPUT_FILE_NOT_EXIST = "O arquivo de entrada '{0}' não existe."
self.QUANTIZING_MODEL_TO = "Quantizando {0} para {1}"
self.QUANTIZATION_TASK_STARTED = "Tarefa de quantização iniciada para {0}"
self.ERROR_STARTING_QUANTIZATION = "Erro ao iniciar a quantização: {0}"
self.UPDATING_MODEL_INFO = "Atualizando informações do modelo: {0}"
self.TASK_FINISHED = "Tarefa concluída: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Mostrando detalhes da tarefa para: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Navegando pelo arquivo de dados IMatrix"
self.SELECT_DATA_FILE = "Selecionar Arquivo de Dados"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = (
"Navegando pelo arquivo de modelo IMatrix"
)
self.SELECT_MODEL_FILE = "Selecionar Arquivo de Modelo"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = (
"Navegando pelo arquivo de saída IMatrix"
)
self.SELECT_OUTPUT_FILE = "Selecionar Arquivo de Saída"
self.STARTING_IMATRIX_GENERATION = "Iniciando a geração de IMatrix"
self.BACKEND_PATH_NOT_EXIST = "O caminho do backend não existe: {0}"
self.GENERATING_IMATRIX = "Gerando IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Erro ao iniciar a geração de IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Tarefa de geração de IMatrix iniciada"
self.ERROR_MESSAGE = "Erro: {0}"
self.TASK_ERROR = "Erro de tarefa: {0}"
self.APPLICATION_CLOSING = "Fechando o aplicativo"
self.APPLICATION_CLOSED = "Aplicativo fechado"
self.SELECT_QUANTIZATION_TYPE = "Selecione o tipo de quantização"
self.ALLOWS_REQUANTIZING = (
"Permite requantizar tensores que já foram quantizados"
)
self.LEAVE_OUTPUT_WEIGHT = "Deixará output.weight não (re)quantizado"
self.DISABLE_K_QUANT_MIXTURES = "Desabilitar misturas k-quant e quantizar todos os tensores para o mesmo tipo"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Usar os dados no arquivo como matriz de importância para otimizações de quantização"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Usar matriz de importância para estes tensores"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Não usar matriz de importância para estes tensores"
)
self.OUTPUT_TENSOR_TYPE = "Tipo de Tensor de Saída:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Usar este tipo para o tensor output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Tipo de Incorporação de Token:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Usar este tipo para o tensor de incorporações de token"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Irá gerar o modelo quantizado nos mesmos shards da entrada"
)
self.OVERRIDE_MODEL_METADATA = "Substituir metadados do modelo"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Arquivo de dados de entrada para geração de IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modelo a ser quantizado"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Caminho de saída para o IMatrix gerado"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Com que frequência salvar o IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Definir valor de offload da GPU (-ngl)"
self.COMPLETED = "Concluído"
self.REFRESH_MODELS = "Atualizar modelos"
class _Arabic(_Localization):
def __init__(self):
super().__init__()
# واجهة المستخدم العامة
self.WINDOW_TITLE = "AutoGGUF (محول نماذج GGUF الآلي)"
self.RAM_USAGE = "استخدام الذاكرة:"
self.CPU_USAGE = "استخدام المعالج:"
self.BACKEND = "خلفية Llama.cpp:"
self.REFRESH_BACKENDS = "تحديث الخلفيات"
self.MODELS_PATH = "مسار النماذج:"
self.OUTPUT_PATH = "مسار الإخراج:"
self.LOGS_PATH = "مسار السجلات:"
self.BROWSE = "تصفح"
self.AVAILABLE_MODELS = "النماذج المتاحة:"
self.REFRESH_MODELS = "تحديث النماذج"
# استيراد النموذج
self.IMPORT_MODEL = "استيراد نموذج"
self.SELECT_MODEL_TO_IMPORT = "اختر النموذج للاستيراد"
self.CONFIRM_IMPORT = "تأكيد الاستيراد"
self.IMPORT_MODEL_CONFIRMATION = "هل تريد استيراد النموذج {}؟"
self.MODEL_IMPORTED_SUCCESSFULLY = "تم استيراد النموذج {} بنجاح"
self.IMPORTING_MODEL = "جاري استيراد النموذج"
self.IMPORTED_MODEL_TOOLTIP = "النموذج المستورد: {}"
# التحقق من GGUF
self.INVALID_GGUF_FILE = "ملف GGUF غير صالح: {}"
self.SHARDED_MODEL_NAME = "{} (مجزأ)"
self.IMPORTED_MODEL_TOOLTIP = "النموذج المستورد: {}"
self.CONCATENATED_FILE_WARNING = (
"هذا جزء من ملف مدمج. لن يعمل مع llama-quantize؛ يرجى دمج الملف أولاً."
)
self.CONCATENATED_FILES_FOUND = (
"تم العثور على {} أجزاء ملفات مدمجة. يرجى دمج الملفات أولاً."
)
# مراقبة وحدة معالجة الرسومات
self.GPU_USAGE = "استخدام وحدة معالجة الرسومات:"
self.GPU_USAGE_FORMAT = "وحدة معالجة الرسومات: {:.1f}% | ذاكرة الفيديو: {:.1f}% ({} ميجابايت / {} ميجابايت)"
self.GPU_DETAILS = "تفاصيل وحدة معالجة الرسومات"
self.GPU_USAGE_OVER_TIME = "استخدام وحدة معالجة الرسومات عبر الوقت"
self.VRAM_USAGE_OVER_TIME = "استخدام ذاكرة الفيديو عبر الوقت"
self.PERCENTAGE = "النسبة المئوية"
self.TIME = "الوقت (ثانية)"
self.NO_GPU_DETECTED = "لم يتم اكتشاف وحدة معالجة رسومات"
self.SELECT_GPU = "اختر وحدة معالجة الرسومات"
self.AMD_GPU_NOT_SUPPORTED = (
"تم اكتشاف وحدة معالجة رسومات AMD، لكنها غير مدعومة"
)
# التكميم
self.QUANTIZATION_TYPE = "نوع التكميم:"
self.ALLOW_REQUANTIZE = "السماح بإعادة التكميم"
self.LEAVE_OUTPUT_TENSOR = "ترك تنسور الإخراج"
self.PURE = "نقي"
self.IMATRIX = "مصفوفة الأهمية:"
self.INCLUDE_WEIGHTS = "تضمين الأوزان:"
self.EXCLUDE_WEIGHTS = "استبعاد الأوزان:"
self.USE_OUTPUT_TENSOR_TYPE = "استخدام نوع تنسور الإخراج"
self.USE_TOKEN_EMBEDDING_TYPE = "استخدام نوع تضمين الرمز"
self.KEEP_SPLIT = "الحفاظ على التقسيم"
self.KV_OVERRIDES = "تجاوزات KV:"
self.ADD_NEW_OVERRIDE = "إضافة تجاوز جديد"
self.QUANTIZE_MODEL = "تكميم النموذج"
self.EXTRA_ARGUMENTS = "وسائط إضافية:"
self.EXTRA_ARGUMENTS_LABEL = "وسائط سطر الأوامر الإضافية"
self.QUANTIZATION_COMMAND = "أمر التكميم"
# الإعدادات المسبقة
self.SAVE_PRESET = "حفظ الإعداد المسبق"
self.LOAD_PRESET = "تحميل الإعداد المسبق"
# المهام
self.TASKS = "المهام:"
# تنزيل llama.cpp
self.DOWNLOAD_LLAMACPP = "تنزيل llama.cpp"
self.SELECT_RELEASE = "اختر الإصدار:"
self.SELECT_ASSET = "اختر الأصل:"
self.EXTRACT_CUDA_FILES = "استخراج ملفات CUDA"
self.SELECT_CUDA_BACKEND = "اختر خلفية CUDA:"
self.DOWNLOAD = "تنزيل"
self.REFRESH_RELEASES = "تحديث الإصدارات"
# توليد مصفوفة الأهمية
self.IMATRIX_GENERATION = "توليد مصفوفة الأهمية"
self.DATA_FILE = "ملف البيانات:"
self.MODEL = "النموذج:"
self.OUTPUT = "الإخراج:"
self.OUTPUT_FREQUENCY = "تردد الإخراج:"
self.GPU_OFFLOAD = "تحميل وحدة معالجة الرسومات:"
self.AUTO = "تلقائي"
self.GENERATE_IMATRIX = "توليد مصفوفة الأهمية"
self.CONTEXT_SIZE = "حجم السياق:"
self.CONTEXT_SIZE_FOR_IMATRIX = "حجم السياق لتوليد مصفوفة الأهمية"
self.THREADS = "عدد المسارات:"
self.NUMBER_OF_THREADS_FOR_IMATRIX = "عدد المسارات لتوليد مصفوفة الأهمية"
self.IMATRIX_GENERATION_COMMAND = "أمر توليد مصفوفة الأهمية"
# تحويل LoRA
self.LORA_CONVERSION = "تحويل LoRA"
self.LORA_INPUT_PATH = "مسار إدخال LoRA"
self.LORA_OUTPUT_PATH = "مسار إخراج LoRA"
self.SELECT_LORA_INPUT_DIRECTORY = "اختر مجلد إدخال LoRA"
self.SELECT_LORA_OUTPUT_FILE = "اختر ملف إخراج LoRA"
self.CONVERT_LORA = "تحويل LoRA"
self.LORA_CONVERSION_COMMAND = "أمر تحويل LoRA"
# تصدير LoRA
self.EXPORT_LORA = "تصدير LoRA"
self.GGML_LORA_ADAPTERS = "محولات GGML LoRA"
self.SELECT_LORA_ADAPTER_FILES = "اختر ملفات محول LoRA"
self.ADD_ADAPTER = "إضافة محول"
self.DELETE_ADAPTER = "حذف"
self.LORA_SCALE = "مقياس LoRA"
self.ENTER_LORA_SCALE_VALUE = "أدخل قيمة مقياس LoRA (اختياري)"
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = "عدد المسارات لتصدير LoRA"
self.LORA_EXPORT_COMMAND = "أمر تصدير LoRA"
# تحويل HuggingFace إلى GGUF
self.HF_TO_GGUF_CONVERSION = "تحويل HuggingFace إلى GGUF"
self.MODEL_DIRECTORY = "مجلد النموذج:"
self.OUTPUT_FILE = "ملف الإخراج:"
self.OUTPUT_TYPE = "نوع الإخراج:"
self.VOCAB_ONLY = "المفردات فقط"
self.USE_TEMP_FILE = "استخدام ملف مؤقت"
self.NO_LAZY_EVALUATION = "بدون تقييم كسول"
self.MODEL_NAME = "اسم النموذج:"
self.VERBOSE = "مفصل"
self.SPLIT_MAX_SIZE = "الحجم الأقصى للتقسيم:"
self.DRY_RUN = "تشغيل تجريبي"
self.CONVERT_HF_TO_GGUF = "تحويل HF إلى GGUF"
self.SELECT_HF_MODEL_DIRECTORY = "اختر مجلد نموذج HuggingFace"
self.BROWSE_FOR_HF_MODEL_DIRECTORY = "تصفح مجلد نموذج HuggingFace"
self.BROWSE_FOR_HF_TO_GGUF_OUTPUT = "تصفح ملف إخراج تحويل HuggingFace إلى GGUF"
# التحقق من التحديثات
self.UPDATE_AVAILABLE = "تحديث متاح"
self.NEW_VERSION_AVAILABLE = "إصدار جديد متاح: {}"
self.DOWNLOAD_NEW_VERSION = "تنزيل؟"
self.ERROR_CHECKING_FOR_UPDATES = "خطأ في التحقق من التحديثات:"
self.CHECKING_FOR_UPDATES = "جاري التحقق من التحديثات"
# رسائل عامة
self.ERROR = "خطأ"
self.WARNING = "تحذير"
self.PROPERTIES = "الخصائص"
self.CANCEL = "إلغاء"
self.RESTART = "إعادة تشغيل"
self.DELETE = "حذف"
self.CONFIRM_DELETION = "هل أنت متأكد أنك تريد حذف هذه المهمة؟"
self.TASK_RUNNING_WARNING = (
"بعض المهام ما زالت قيد التشغيل. هل أنت متأكد أنك تريد الخروج؟"
)
self.YES = "نعم"
self.NO = "لا"
self.COMPLETED = "مكتمل"
# أنواع الملفات
self.ALL_FILES = "جميع الملفات (*)"
self.GGUF_FILES = "ملفات GGUF (*.gguf)"
self.DAT_FILES = "ملفات DAT (*.dat)"
self.JSON_FILES = "ملفات JSON (*.json)"
self.BIN_FILES = "ملفات ثنائية (*.bin)"
self.LORA_FILES = "ملفات LoRA (*.bin *.gguf)"
self.GGUF_AND_BIN_FILES = "ملفات GGUF وثنائية (*.gguf *.bin)"
self.SHARDED = "مجزأ"
# رسائل الحالة
self.DOWNLOAD_COMPLETE = "اكتمل التنزيل"
self.CUDA_EXTRACTION_FAILED = "فشل استخراج CUDA"
self.PRESET_SAVED = "تم حفظ الإعداد المسبق"
self.PRESET_LOADED = "تم تحميل الإعداد المسبق"
self.NO_ASSET_SELECTED = "لم يتم اختيار أي أصل"
self.DOWNLOAD_FAILED = "فشل التنزيل"
self.NO_BACKEND_SELECTED = "لم يتم اختيار أي خلفية"
self.NO_MODEL_SELECTED = "لم يتم اختيار أي نموذج"
self.NO_SUITABLE_CUDA_BACKENDS = "لم يتم العثور على خلفيات CUDA مناسبة"
self.IN_PROGRESS = "قيد التنفيذ"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "تم تنزيل واستخراج ثنائي llama.cpp إلى {0}"
self.CUDA_FILES_EXTRACTED = "تم استخراج ملفات CUDA إلى"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"لم يتم العثور على خلفية CUDA مناسبة للاستخراج"
)
self.ERROR_FETCHING_RELEASES = "خطأ في جلب الإصدارات: {0}"
self.CONFIRM_DELETION_TITLE = "تأكيد الحذف"
self.LOG_FOR = "سجل لـ {0}"
self.FAILED_TO_LOAD_PRESET = "فشل تحميل الإعداد المسبق: {0}"
self.INITIALIZING_AUTOGGUF = "جاري تهيئة تطبيق AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "اكتملت تهيئة AutoGGUF"
self.REFRESHING_BACKENDS = "جاري تحديث الخلفيات"
self.NO_BACKENDS_AVAILABLE = "لا توجد خلفيات متاحة"
self.FOUND_VALID_BACKENDS = "تم العثور على {0} خلفيات صالحة"
self.SAVING_PRESET = "جاري حفظ الإعداد المسبق"
self.PRESET_SAVED_TO = "تم حفظ الإعداد المسبق في {0}"
self.LOADING_PRESET = "جاري تحميل الإعداد المسبق"
self.PRESET_LOADED_FROM = "تم تحميل الإعداد المسبق من {0}"
self.ADDING_KV_OVERRIDE = "إضافة تجاوز KV: {0}"
self.SAVING_TASK_PRESET = "جاري حفظ إعداد مسبق للمهمة {0}"
self.TASK_PRESET_SAVED = "تم حفظ الإعداد المسبق للمهمة"
self.TASK_PRESET_SAVED_TO = "تم حفظ الإعداد المسبق للمهمة في {0}"
self.RESTARTING_TASK = "إعادة تشغيل المهمة: {0}"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "اكتمل التنزيل. تم الاستخراج إلى: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"تم تنزيل واستخراج ثنائي llama.cpp إلى {0}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"لم يتم العثور على خلفية CUDA مناسبة للاستخراج"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"تم تنزيل واستخراج ثنائي llama.cpp إلى {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "جاري تحديث إصدارات llama.cpp"
self.UPDATING_ASSET_LIST = "جاري تحديث قائمة الأصول"
self.UPDATING_CUDA_OPTIONS = "جاري تحديث خيارات CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "بدء تنزيل llama.cpp"
self.UPDATING_CUDA_BACKENDS = "جاري تحديث خلفيات CUDA"
self.NO_CUDA_BACKEND_SELECTED = "لم يتم اختيار خلفية CUDA للاستخراج"
self.EXTRACTING_CUDA_FILES = "جاري استخراج ملفات CUDA من {0} إلى {1}"
self.DOWNLOAD_ERROR = "خطأ في التنزيل: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "عرض قائمة سياق المهمة"
self.SHOWING_PROPERTIES_FOR_TASK = "عرض خصائص المهمة: {0}"
self.CANCELLING_TASK = "إلغاء المهمة: {0}"
self.CANCELED = "تم الإلغاء"
self.DELETING_TASK = "حذف المهمة: {0}"
self.LOADING_MODELS = "جاري تحميل النماذج"
self.LOADED_MODELS = "تم تحميل {0} نماذج"
self.BROWSING_FOR_MODELS_DIRECTORY = "تصفح مجلد النماذج"
self.SELECT_MODELS_DIRECTORY = "اختر مجلد النماذج"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "تصفح مجلد الإخراج"
self.SELECT_OUTPUT_DIRECTORY = "اختر مجلد الإخراج"
self.BROWSING_FOR_LOGS_DIRECTORY = "تصفح مجلد السجلات"
self.SELECT_LOGS_DIRECTORY = "اختر مجلد السجلات"
self.BROWSING_FOR_IMATRIX_FILE = "تصفح ملف مصفوفة الأهمية"
self.SELECT_IMATRIX_FILE = "اختر ملف مصفوفة الأهمية"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} ميجابايت / {2} ميجابايت)"
self.CPU_USAGE_FORMAT = "استخدام المعالج: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "التحقق من صحة مدخلات التكميم"
self.MODELS_PATH_REQUIRED = "مسار النماذج مطلوب"
self.OUTPUT_PATH_REQUIRED = "مسار الإخراج مطلوب"
self.LOGS_PATH_REQUIRED = "مسار السجلات مطلوب"
self.STARTING_MODEL_QUANTIZATION = "بدء تكميم النموذج"
self.INPUT_FILE_NOT_EXIST = "ملف الإدخال '{0}' غير موجود."
self.QUANTIZING_MODEL_TO = "تكميم {0} إلى {1}"
self.QUANTIZATION_TASK_STARTED = "بدأت مهمة تكميم {0}"
self.ERROR_STARTING_QUANTIZATION = "خطأ في بدء التكميم: {0}"
self.UPDATING_MODEL_INFO = "تحديث معلومات النموذج: {0}"
self.TASK_FINISHED = "انتهت المهمة: {0}"
self.SHOWING_TASK_DETAILS_FOR = "عرض تفاصيل المهمة لـ: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "تصفح ملف بيانات مصفوفة الأهمية"
self.SELECT_DATA_FILE = "اختر ملف البيانات"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "تصفح ملف نموذج مصفوفة الأهمية"
self.SELECT_MODEL_FILE = "اختر ملف النموذج"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "تصفح ملف إخراج مصفوفة الأهمية"
self.SELECT_OUTPUT_FILE = "اختر ملف الإخراج"
self.STARTING_IMATRIX_GENERATION = "بدء توليد مصفوفة الأهمية"
self.BACKEND_PATH_NOT_EXIST = "مسار الخلفية غير موجود: {0}"
self.GENERATING_IMATRIX = "جاري توليد مصفوفة الأهمية"
self.ERROR_STARTING_IMATRIX_GENERATION = "خطأ في بدء توليد مصفوفة الأهمية: {0}"
self.IMATRIX_GENERATION_TASK_STARTED = "بدأت مهمة توليد مصفوفة الأهمية"
self.ERROR_MESSAGE = "خطأ: {0}"
self.TASK_ERROR = "خطأ في المهمة: {0}"
self.APPLICATION_CLOSING = "جاري إغلاق التطبيق"
self.APPLICATION_CLOSED = "تم إغلاق التطبيق"
self.SELECT_QUANTIZATION_TYPE = "اختر نوع التكميم"
self.ALLOWS_REQUANTIZING = "يسمح بإعادة تكميم التنسورات التي تم تكميمها بالفعل"
self.LEAVE_OUTPUT_WEIGHT = "سيترك output.weight بدون (إعادة) تكميم"
self.DISABLE_K_QUANT_MIXTURES = (
"تعطيل خلطات k-quant وتكميم جميع التنسورات إلى نفس النوع"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"استخدام البيانات في الملف كمصفوفة أهمية لتحسينات التكميم"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "استخدام مصفوفة الأهمية لهذه التنسورات"
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"عدم استخدام مصفوفة الأهمية لهذه التنسورات"
)
self.OUTPUT_TENSOR_TYPE = "نوع تنسور الإخراج:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "استخدام هذا النوع لتنسور output.weight"
self.TOKEN_EMBEDDING_TYPE = "نوع تضمين الرمز:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"استخدام هذا النوع لتنسور تضمينات الرموز"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"سيولد النموذج المكمم في نفس الأجزاء كالإدخال"
)
self.OVERRIDE_MODEL_METADATA = "تجاوز بيانات تعريف النموذج"
self.INPUT_DATA_FILE_FOR_IMATRIX = "ملف بيانات الإدخال لتوليد مصفوفة الأهمية"
self.MODEL_TO_BE_QUANTIZED = "النموذج المراد تكميمه"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "مسار الإخراج لمصفوفة الأهمية المولدة"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "عدد مرات حفظ مصفوفة الأهمية"
self.SET_GPU_OFFLOAD_VALUE = "تعيين قيمة تحميل وحدة معالجة الرسومات (-ngl)"
self.STARTING_LORA_CONVERSION = "بدء تحويل LoRA"
self.LORA_INPUT_PATH_REQUIRED = "مسار إدخال LoRA مطلوب."
self.LORA_OUTPUT_PATH_REQUIRED = "مسار إخراج LoRA مطلوب."
self.ERROR_STARTING_LORA_CONVERSION = "خطأ في بدء تحويل LoRA: {}"
self.LORA_CONVERSION_TASK_STARTED = "بدأت مهمة تحويل LoRA."
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = "تصفح مجلد إدخال LoRA..."
self.BROWSING_FOR_LORA_OUTPUT_FILE = "تصفح ملف إخراج LoRA..."
self.CONVERTING_LORA = "تحويل LoRA"
self.LORA_CONVERSION_FINISHED = "اكتمل تحويل LoRA."
self.LORA_FILE_MOVED = "تم نقل ملف LoRA من {} إلى {}."
self.LORA_FILE_NOT_FOUND = "لم يتم العثور على ملف LoRA: {}."
self.ERROR_MOVING_LORA_FILE = "خطأ في نقل ملف LoRA: {}"
self.MODEL_PATH_REQUIRED = "مسار النموذج مطلوب."
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = "مطلوب محول LoRA واحد على الأقل."
self.INVALID_LORA_SCALE_VALUE = "قيمة مقياس LoRA غير صالحة."
self.ERROR_STARTING_LORA_EXPORT = "خطأ في بدء تصدير LoRA: {}"
self.LORA_EXPORT_TASK_STARTED = "بدأت مهمة تصدير LoRA."
self.EXPORTING_LORA = "جاري تصدير LoRA..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = "تصفح ملف نموذج تصدير LoRA..."
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = "تصفح ملف إخراج تصدير LoRA..."
self.ADDING_LORA_ADAPTER = "إضافة محول LoRA..."
self.DELETING_LORA_ADAPTER = "حذف محول LoRA..."
self.SELECT_LORA_ADAPTER_FILE = "اختر ملف محول LoRA"
self.STARTING_LORA_EXPORT = "بدء تصدير LoRA..."
self.SELECT_OUTPUT_TYPE = "اختر نوع الإخراج (GGUF أو GGML)"
self.BASE_MODEL = "النموذج الأساسي"
self.SELECT_BASE_MODEL_FILE = "اختر ملف النموذج الأساسي (GGUF)"
self.BASE_MODEL_PATH_REQUIRED = "مسار النموذج الأساسي مطلوب لإخراج GGUF."
self.BROWSING_FOR_BASE_MODEL_FILE = "تصفح ملف النموذج الأساسي..."
self.SELECT_BASE_MODEL_FOLDER = (
"اختر مجلد النموذج الأساسي (يحتوي على safetensors)"
)
self.BROWSING_FOR_BASE_MODEL_FOLDER = "تصفح مجلد النموذج الأساسي..."
self.LORA_CONVERSION_FROM_TO = "تحويل LoRA من {} إلى {}"
self.GENERATING_IMATRIX_FOR = "توليد مصفوفة الأهمية لـ {}"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = (
"مسار النموذج مطلوب لتوليد مصفوفة الأهمية."
)
self.NO_ASSET_SELECTED_FOR_CUDA_CHECK = "لم يتم اختيار أي أصل للتحقق من CUDA"
self.NO_QUANTIZATION_TYPE_SELECTED = (
"لم يتم اختيار نوع تكميم. يرجى اختيار نوع تكميم واحد على الأقل."
)
self.STARTING_HF_TO_GGUF_CONVERSION = "بدء تحويل HuggingFace إلى GGUF"
self.MODEL_DIRECTORY_REQUIRED = "مجلد النموذج مطلوب"
self.HF_TO_GGUF_CONVERSION_COMMAND = "أمر تحويل HF إلى GGUF: {}"
self.CONVERTING_TO_GGUF = "تحويل {} إلى GGUF"
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
"خطأ في بدء تحويل HuggingFace إلى GGUF: {}"
)
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = "بدأت مهمة تحويل HuggingFace إلى GGUF"
class _Korean(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (자동 GGUF 모델 양자화기)"
self.RAM_USAGE = "RAM 사용량:"
self.CPU_USAGE = "CPU 사용량:"
self.BACKEND = "Llama.cpp 백엔드:"
self.REFRESH_BACKENDS = "백엔드 새로 고침"
self.MODELS_PATH = "모델 경로:"
self.OUTPUT_PATH = "출력 경로:"
self.LOGS_PATH = "로그 경로:"
self.BROWSE = "찾아보기"
self.AVAILABLE_MODELS = "사용 가능한 모델:"
self.QUANTIZATION_TYPE = "양자화 유형:"
self.ALLOW_REQUANTIZE = "재양자화 허용"
self.LEAVE_OUTPUT_TENSOR = "출력 텐서 유지"
self.PURE = "순수"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "가중치 포함:"
self.EXCLUDE_WEIGHTS = "가중치 제외:"
self.USE_OUTPUT_TENSOR_TYPE = "출력 텐서 유형 사용"
self.USE_TOKEN_EMBEDDING_TYPE = "토큰 임베딩 유형 사용"
self.KEEP_SPLIT = "분할 유지"
self.KV_OVERRIDES = "KV 재정의:"
self.ADD_NEW_OVERRIDE = "새 재정의 추가"
self.QUANTIZE_MODEL = "모델 양자화"
self.SAVE_PRESET = "프리셋 저장"
self.LOAD_PRESET = "프리셋 로드"
self.TASKS = "작업:"
self.DOWNLOAD_LLAMACPP = "llama.cpp 다운로드"
self.SELECT_RELEASE = "릴리스 선택:"
self.SELECT_ASSET = "자산 선택:"
self.EXTRACT_CUDA_FILES = "CUDA 파일 추출"
self.SELECT_CUDA_BACKEND = "CUDA 백엔드 선택:"
self.DOWNLOAD = "다운로드"
self.IMATRIX_GENERATION = "IMatrix 생성"
self.DATA_FILE = "데이터 파일:"
self.MODEL = "모델:"
self.OUTPUT = "출력:"
self.OUTPUT_FREQUENCY = "출력 빈도:"
self.GPU_OFFLOAD = "GPU 오프로드:"
self.AUTO = "자동"
self.GENERATE_IMATRIX = "IMatrix 생성"
self.ERROR = "오류"
self.WARNING = "경고"
self.PROPERTIES = "속성"
self.CANCEL = "취소"
self.RESTART = "다시 시작"
self.DELETE = "삭제"
self.CONFIRM_DELETION = "이 작업을 삭제하시겠습니까?"
self.TASK_RUNNING_WARNING = "일부 작업이 아직 실행 중입니다. 종료하시겠습니까?"
self.YES = ""
self.NO = "아니요"
self.DOWNLOAD_COMPLETE = "다운로드 완료"
self.CUDA_EXTRACTION_FAILED = "CUDA 추출 실패"
self.PRESET_SAVED = "프리셋 저장됨"
self.PRESET_LOADED = "프리셋 로드됨"
self.NO_ASSET_SELECTED = "자산이 선택되지 않았습니다"
self.DOWNLOAD_FAILED = "다운로드 실패"
self.NO_BACKEND_SELECTED = "백엔드가 선택되지 않았습니다"
self.NO_MODEL_SELECTED = "모델이 선택되지 않았습니다"
self.REFRESH_RELEASES = "릴리스 새로 고침"
self.NO_SUITABLE_CUDA_BACKENDS = "적합한 CUDA 백엔드를 찾을 수 없습니다"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다.\nCUDA 파일이 {1}에 추출되었습니다."
self.CUDA_FILES_EXTRACTED = "CUDA 파일이 에 추출되었습니다."
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"추출에 적합한 CUDA 백엔드를 찾을 수 없습니다."
)
self.ERROR_FETCHING_RELEASES = "릴리스를 가져오는 중 오류가 발생했습니다: {0}"
self.CONFIRM_DELETION_TITLE = "삭제 확인"
self.LOG_FOR = "{0}에 대한 로그"
self.ALL_FILES = "모든 파일 (*)"
self.GGUF_FILES = "GGUF 파일 (*.gguf)"
self.DAT_FILES = "DAT 파일 (*.dat)"
self.JSON_FILES = "JSON 파일 (*.json)"
self.FAILED_LOAD_PRESET = "프리셋을 로드하지 못했습니다: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUF 애플리케이션을 초기화하는 중입니다."
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF 초기화가 완료되었습니다."
self.REFRESHING_BACKENDS = "백엔드를 새로 고치는 중입니다."
self.NO_BACKENDS_AVAILABLE = "사용 가능한 백엔드가 없습니다."
self.FOUND_VALID_BACKENDS = "{0}개의 유효한 백엔드를 찾았습니다."
self.SAVING_PRESET = "프리셋을 저장하는 중입니다."
self.PRESET_SAVED_TO = "프리셋이 {0}에 저장되었습니다."
self.LOADING_PRESET = "프리셋을 로드하는 중입니다."
self.PRESET_LOADED_FROM = "{0}에서 프리셋을 로드했습니다."
self.ADDING_KV_OVERRIDE = "KV 재정의를 추가하는 중입니다: {0}"
self.SAVING_TASK_PRESET = "{0}에 대한 작업 프리셋을 저장하는 중입니다."
self.TASK_PRESET_SAVED = "작업 프리셋이 저장되었습니다."
self.TASK_PRESET_SAVED_TO = "작업 프리셋이 {0}에 저장되었습니다."
self.RESTARTING_TASK = "작업을 다시 시작하는 중입니다: {0}"
self.IN_PROGRESS = "진행 중"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"다운로드가 완료되었습니다. 추출 위치: {0}"
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다.\nCUDA 파일이 {1}에 추출되었습니다."
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"추출에 적합한 CUDA 백엔드를 찾을 수 없습니다."
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp 바이너리가 다운로드되어 {0}에 추출되었습니다."
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cpp 릴리스를 새로 고치는 중입니다."
self.UPDATING_ASSET_LIST = "자산 목록을 업데이트하는 중입니다."
self.UPDATING_CUDA_OPTIONS = "CUDA 옵션을 업데이트하는 중입니다."
self.STARTING_LLAMACPP_DOWNLOAD = "llama.cpp 다운로드를 시작하는 중입니다."
self.UPDATING_CUDA_BACKENDS = "CUDA 백엔드를 업데이트하는 중입니다."
self.NO_CUDA_BACKEND_SELECTED = "추출에 CUDA 백엔드가 선택되지 않았습니다."
self.EXTRACTING_CUDA_FILES = "{0}에서 {1}로 CUDA 파일을 추출하는 중입니다."
self.DOWNLOAD_ERROR = "다운로드 오류: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "작업 컨텍스트 메뉴를 표시하는 중입니다."
self.SHOWING_PROPERTIES_FOR_TASK = "작업에 대한 속성을 표시하는 중입니다: {0}"
self.CANCELLING_TASK = "작업을 취소하는 중입니다: {0}"
self.CANCELED = "취소됨"
self.DELETING_TASK = "작업을 삭제하는 중입니다: {0}"
self.LOADING_MODELS = "모델을 로드하는 중입니다."
self.LOADED_MODELS = "{0}개의 모델이 로드되었습니다."
self.BROWSING_FOR_MODELS_DIRECTORY = "모델 디렉토리를 찾아보는 중입니다."
self.SELECT_MODELS_DIRECTORY = "모델 디렉토리 선택"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "출력 디렉토리를 찾아보는 중입니다."
self.SELECT_OUTPUT_DIRECTORY = "출력 디렉토리 선택"
self.BROWSING_FOR_LOGS_DIRECTORY = "로그 디렉토리를 찾아보는 중입니다."
self.SELECT_LOGS_DIRECTORY = "로그 디렉토리 선택"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix 파일을 찾아보는 중입니다."
self.SELECT_IMATRIX_FILE = "IMatrix 파일 선택"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU 사용량: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "양자화 입력을 검증하는 중입니다."
self.MODELS_PATH_REQUIRED = "모델 경로가 필요합니다."
self.OUTPUT_PATH_REQUIRED = "출력 경로가 필요합니다."
self.LOGS_PATH_REQUIRED = "로그 경로가 필요합니다."
self.STARTING_MODEL_QUANTIZATION = "모델 양자화를 시작하는 중입니다."
self.INPUT_FILE_NOT_EXIST = "입력 파일 '{0}'이 존재하지 않습니다."
self.QUANTIZING_MODEL_TO = "{0}{1}(으)로 양자화하는 중입니다."
self.QUANTIZATION_TASK_STARTED = "{0}에 대한 양자화 작업이 시작되었습니다."
self.ERROR_STARTING_QUANTIZATION = (
"양자화를 시작하는 중 오류가 발생했습니다: {0}"
)
self.UPDATING_MODEL_INFO = "모델 정보를 업데이트하는 중입니다: {0}"
self.TASK_FINISHED = "작업이 완료되었습니다: {0}"
self.SHOWING_TASK_DETAILS_FOR = (
"다음에 대한 작업 세부 정보를 표시하는 중입니다: {0}"
)
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrix 데이터 파일을 찾아보는 중입니다."
self.SELECT_DATA_FILE = "데이터 파일 선택"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrix 모델 파일을 찾아보는 중입니다."
self.SELECT_MODEL_FILE = "모델 파일 선택"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "IMatrix 출력 파일을 찾아보는 중입니다."
self.SELECT_OUTPUT_FILE = "출력 파일 선택"
self.STARTING_IMATRIX_GENERATION = "IMatrix 생성을 시작하는 중입니다."
self.BACKEND_PATH_NOT_EXIST = "백엔드 경로가 존재하지 않습니다: {0}"
self.GENERATING_IMATRIX = "IMatrix를 생성하는 중입니다."
self.ERROR_STARTING_IMATRIX_GENERATION = (
"IMatrix 생성을 시작하는 중 오류가 발생했습니다: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix 생성 작업이 시작되었습니다."
self.ERROR_MESSAGE = "오류: {0}"
self.TASK_ERROR = "작업 오류: {0}"
self.APPLICATION_CLOSING = "애플리케이션을 닫는 중입니다."
self.APPLICATION_CLOSED = "애플리케이션이 닫혔습니다."
self.SELECT_QUANTIZATION_TYPE = "양자화 유형을 선택하세요."
self.ALLOWS_REQUANTIZING = "이미 양자화된 텐서의 재양자화를 허용합니다."
self.LEAVE_OUTPUT_WEIGHT = "output.weight를 (재)양자화하지 않은 상태로 둡니다."
self.DISABLE_K_QUANT_MIXTURES = (
"k-양자 혼합을 비활성화하고 모든 텐서를 동일한 유형으로 양자화합니다."
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"양자 최적화를 위한 중요도 행렬로 파일의 데이터를 사용합니다."
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"이러한 텐서에 중요도 행렬을 사용합니다."
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"이러한 텐서에 중요도 행렬을 사용하지 않습니다."
)
self.OUTPUT_TENSOR_TYPE = "출력 텐서 유형:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"output.weight 텐서에 이 유형을 사용합니다."
)
self.TOKEN_EMBEDDING_TYPE = "토큰 임베딩 유형:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"토큰 임베딩 텐서에 이 유형을 사용합니다."
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"입력과 동일한 샤드에 양자화된 모델을 생성합니다."
)
self.OVERRIDE_MODEL_METADATA = "모델 메타데이터를 재정의합니다."
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix 생성을 위한 입력 데이터 파일"
self.MODEL_TO_BE_QUANTIZED = "양자화될 모델"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "생성된 IMatrix의 출력 경로"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "IMatrix를 저장할 빈도"
self.SET_GPU_OFFLOAD_VALUE = "GPU 오프로드 값 설정 (-ngl)"
self.COMPLETED = "완료됨"
self.REFRESH_MODELS = "모델 새로고침"
class _Italian(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Quantizzatore Automatico di Modelli GGUF)"
self.RAM_USAGE = "Utilizzo RAM:"
self.CPU_USAGE = "Utilizzo CPU:"
self.BACKEND = "Backend Llama.cpp:"
self.REFRESH_BACKENDS = "Aggiorna Backend"
self.MODELS_PATH = "Percorso Modelli:"
self.OUTPUT_PATH = "Percorso Output:"
self.LOGS_PATH = "Percorso Log:"
self.BROWSE = "Sfoglia"
self.AVAILABLE_MODELS = "Modelli Disponibili:"
self.QUANTIZATION_TYPE = "Tipo di Quantizzazione:"
self.ALLOW_REQUANTIZE = "Consenti Riquantizzazione"
self.LEAVE_OUTPUT_TENSOR = "Lascia Tensore di Output"
self.PURE = "Puro"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Includi Pesi:"
self.EXCLUDE_WEIGHTS = "Escludi Pesi:"
self.USE_OUTPUT_TENSOR_TYPE = "Usa Tipo di Tensore di Output"
self.USE_TOKEN_EMBEDDING_TYPE = "Usa Tipo di Incorporamento Token"
self.KEEP_SPLIT = "Mantieni Divisione"
self.KV_OVERRIDES = "Override KV:"
self.ADD_NEW_OVERRIDE = "Aggiungi Nuovo Override"
self.QUANTIZE_MODEL = "Quantizza Modello"
self.SAVE_PRESET = "Salva Preimpostazione"
self.LOAD_PRESET = "Carica Preimpostazione"
self.TASKS = "Attività:"
self.DOWNLOAD_LLAMACPP = "Scarica llama.cpp"
self.SELECT_RELEASE = "Seleziona Versione:"
self.SELECT_ASSET = "Seleziona Asset:"
self.EXTRACT_CUDA_FILES = "Estrai File CUDA"
self.SELECT_CUDA_BACKEND = "Seleziona Backend CUDA:"
self.DOWNLOAD = "Scarica"
self.IMATRIX_GENERATION = "Generazione IMatrix"
self.DATA_FILE = "File Dati:"
self.MODEL = "Modello:"
self.OUTPUT = "Output:"
self.OUTPUT_FREQUENCY = "Frequenza di Output:"
self.GPU_OFFLOAD = "Offload GPU:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Genera IMatrix"
self.ERROR = "Errore"
self.WARNING = "Avviso"
self.PROPERTIES = "Proprietà"
self.CANCEL = "Annulla"
self.RESTART = "Riavvia"
self.DELETE = "Elimina"
self.CONFIRM_DELETION = "Sei sicuro di voler eliminare questa attività?"
self.TASK_RUNNING_WARNING = (
"Alcune attività sono ancora in esecuzione. Sei sicuro di voler uscire?"
)
self.YES = ""
self.NO = "No"
self.DOWNLOAD_COMPLETE = "Download Completato"
self.CUDA_EXTRACTION_FAILED = "Estrazione CUDA Fallita"
self.PRESET_SAVED = "Preimpostazione Salvata"
self.PRESET_LOADED = "Preimpostazione Caricata"
self.NO_ASSET_SELECTED = "Nessun asset selezionato"
self.DOWNLOAD_FAILED = "Download fallito"
self.NO_BACKEND_SELECTED = "Nessun backend selezionato"
self.NO_MODEL_SELECTED = "Nessun modello selezionato"
self.REFRESH_RELEASES = "Aggiorna Versioni"
self.NO_SUITABLE_CUDA_BACKENDS = "Nessun backend CUDA adatto trovato"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"Binario llama.cpp scaricato ed estratto in {0}\nFile CUDA estratti in {1}"
)
self.CUDA_FILES_EXTRACTED = "File CUDA estratti in"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nessun backend CUDA adatto trovato per l'estrazione"
)
self.ERROR_FETCHING_RELEASES = "Errore durante il recupero delle versioni: {0}"
self.CONFIRM_DELETION_TITLE = "Conferma Eliminazione"
self.LOG_FOR = "Log per {0}"
self.ALL_FILES = "Tutti i File (*)"
self.GGUF_FILES = "File GGUF (*.gguf)"
self.DAT_FILES = "File DAT (*.dat)"
self.JSON_FILES = "File JSON (*.json)"
self.FAILED_LOAD_PRESET = "Impossibile caricare la preimpostazione: {0}"
self.INITIALIZING_AUTOGGUF = "Inizializzazione dell'applicazione AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = (
"Inizializzazione di AutoGGUF completata"
)
self.REFRESHING_BACKENDS = "Aggiornamento backend"
self.NO_BACKENDS_AVAILABLE = "Nessun backend disponibile"
self.FOUND_VALID_BACKENDS = "Trovati {0} backend validi"
self.SAVING_PRESET = "Salvataggio preimpostazione"
self.PRESET_SAVED_TO = "Preimpostazione salvata in {0}"
self.LOADING_PRESET = "Caricamento preimpostazione"
self.PRESET_LOADED_FROM = "Preimpostazione caricata da {0}"
self.ADDING_KV_OVERRIDE = "Aggiunta override KV: {0}"
self.SAVING_TASK_PRESET = "Salvataggio preimpostazione attività per {0}"
self.TASK_PRESET_SAVED = "Preimpostazione Attività Salvata"
self.TASK_PRESET_SAVED_TO = "Preimpostazione attività salvata in {0}"
self.RESTARTING_TASK = "Riavvio attività: {0}"
self.IN_PROGRESS = "In Corso"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download completato. Estratto in: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"Binario llama.cpp scaricato ed estratto in {0}\nFile CUDA estratti in {1}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nessun backend CUDA adatto trovato per l'estrazione"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Binario llama.cpp scaricato ed estratto in {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Aggiornamento versioni di llama.cpp"
self.UPDATING_ASSET_LIST = "Aggiornamento elenco asset"
self.UPDATING_CUDA_OPTIONS = "Aggiornamento opzioni CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Avvio download di llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Aggiornamento backend CUDA"
self.NO_CUDA_BACKEND_SELECTED = (
"Nessun backend CUDA selezionato per l'estrazione"
)
self.EXTRACTING_CUDA_FILES = "Estrazione file CUDA da {0} a {1}"
self.DOWNLOAD_ERROR = "Errore di download: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Visualizzazione menu contestuale attività"
self.SHOWING_PROPERTIES_FOR_TASK = (
"Visualizzazione proprietà per l'attività: {0}"
)
self.CANCELLING_TASK = "Annullamento attività: {0}"
self.CANCELED = "Annullato"
self.DELETING_TASK = "Eliminazione attività: {0}"
self.LOADING_MODELS = "Caricamento modelli"
self.LOADED_MODELS = "{0} modelli caricati"
self.BROWSING_FOR_MODELS_DIRECTORY = "Esplorazione directory modelli"
self.SELECT_MODELS_DIRECTORY = "Seleziona Directory Modelli"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Esplorazione directory output"
self.SELECT_OUTPUT_DIRECTORY = "Seleziona Directory Output"
self.BROWSING_FOR_LOGS_DIRECTORY = "Esplorazione directory log"
self.SELECT_LOGS_DIRECTORY = "Seleziona Directory Log"
self.BROWSING_FOR_IMATRIX_FILE = "Esplorazione file IMatrix"
self.SELECT_IMATRIX_FILE = "Seleziona File IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Utilizzo CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Convalida input di quantizzazione"
self.MODELS_PATH_REQUIRED = "Il percorso dei modelli è obbligatorio"
self.OUTPUT_PATH_REQUIRED = "Il percorso di output è obbligatorio"
self.LOGS_PATH_REQUIRED = "Il percorso dei log è obbligatorio"
self.STARTING_MODEL_QUANTIZATION = "Avvio quantizzazione del modello"
self.INPUT_FILE_NOT_EXIST = "Il file di input '{0}' non esiste."
self.QUANTIZING_MODEL_TO = "Quantizzazione di {0} a {1}"
self.QUANTIZATION_TASK_STARTED = "Attività di quantizzazione avviata per {0}"
self.ERROR_STARTING_QUANTIZATION = (
"Errore durante l'avvio della quantizzazione: {0}"
)
self.UPDATING_MODEL_INFO = "Aggiornamento informazioni sul modello: {0}"
self.TASK_FINISHED = "Attività completata: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Visualizzazione dettagli attività per: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Esplorazione file dati IMatrix"
self.SELECT_DATA_FILE = "Seleziona File Dati"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Esplorazione file modello IMatrix"
self.SELECT_MODEL_FILE = "Seleziona File Modello"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Esplorazione file output IMatrix"
self.SELECT_OUTPUT_FILE = "Seleziona File Output"
self.STARTING_IMATRIX_GENERATION = "Avvio generazione IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Il percorso del backend non esiste: {0}"
self.GENERATING_IMATRIX = "Generazione IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Errore durante l'avvio della generazione di IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Attività di generazione IMatrix avviata"
self.ERROR_MESSAGE = "Errore: {0}"
self.TASK_ERROR = "Errore attività: {0}"
self.APPLICATION_CLOSING = "Chiusura applicazione"
self.APPLICATION_CLOSED = "Applicazione chiusa"
self.SELECT_QUANTIZATION_TYPE = "Seleziona il tipo di quantizzazione"
self.ALLOWS_REQUANTIZING = (
"Consente di riquantizzare tensori che sono già stati quantizzati"
)
self.LEAVE_OUTPUT_WEIGHT = "Lascerà output.weight non (ri)quantizzato"
self.DISABLE_K_QUANT_MIXTURES = (
"Disabilita le miscele k-quant e quantizza tutti i tensori allo stesso tipo"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Utilizza i dati nel file come matrice di importanza per le ottimizzazioni di quantizzazione"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Usa la matrice di importanza per questi tensori"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Non usare la matrice di importanza per questi tensori"
)
self.OUTPUT_TENSOR_TYPE = "Tipo di Tensore di Output:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Usa questo tipo per il tensore output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Tipo di Incorporamento Token:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Usa questo tipo per il tensore di incorporamenti token"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Genererà il modello quantizzato negli stessi frammenti dell'input"
)
self.OVERRIDE_MODEL_METADATA = "Sovrascrivi i metadati del modello"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"File di dati di input per la generazione di IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modello da quantizzare"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Percorso di output per l'IMatrix generato"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Con quale frequenza salvare l'IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Imposta il valore di offload GPU (-ngl)"
self.COMPLETED = "Completato"
self.REFRESH_MODELS = "Aggiorna modelli"
class _Turkish(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Otomatik GGUF Modeli Niceleyici)"
self.RAM_USAGE = "RAM Kullanımı:"
self.CPU_USAGE = "CPU Kullanımı:"
self.BACKEND = "Llama.cpp Arka Uç:"
self.REFRESH_BACKENDS = "Arka Uçları Yenile"
self.MODELS_PATH = "Modeller Yolu:"
self.OUTPUT_PATH = "Çıkış Yolu:"
self.LOGS_PATH = "Günlükler Yolu:"
self.BROWSE = "Gözat"
self.AVAILABLE_MODELS = "Kullanılabilir Modeller:"
self.QUANTIZATION_TYPE = "Niceleme Türü:"
self.ALLOW_REQUANTIZE = "Yeniden Nicelemeye İzin Ver"
self.LEAVE_OUTPUT_TENSOR = "Çıkış Tensörünü Bırak"
self.PURE = "Saf"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "ırlıkları Dahil Et:"
self.EXCLUDE_WEIGHTS = "ırlıkları Hariç Tut:"
self.USE_OUTPUT_TENSOR_TYPE = "Çıkış Tensör Türünü Kullan"
self.USE_TOKEN_EMBEDDING_TYPE = "Token Gömme Türünü Kullan"
self.KEEP_SPLIT = "Bölmeyi Koru"
self.KV_OVERRIDES = "KV Geçersiz Kılmaları:"
self.ADD_NEW_OVERRIDE = "Yeni Geçersiz Kılma Ekle"
self.QUANTIZE_MODEL = "Modeli Nicele"
self.SAVE_PRESET = "Ön Ayarı Kaydet"
self.LOAD_PRESET = "Ön Ayarı Yükle"
self.TASKS = "Görevler:"
self.DOWNLOAD_LLAMACPP = "llama.cpp'yi İndir"
self.SELECT_RELEASE = "Sürümü Seç:"
self.SELECT_ASSET = "Varlığı Seç:"
self.EXTRACT_CUDA_FILES = "CUDA Dosyalarını Çıkar"
self.SELECT_CUDA_BACKEND = "CUDA Arka Ucunu Seç:"
self.DOWNLOAD = "İndir"
self.IMATRIX_GENERATION = "IMatrix Üretimi"
self.DATA_FILE = "Veri Dosyası:"
self.MODEL = "Model:"
self.OUTPUT = "Çıkış:"
self.OUTPUT_FREQUENCY = "Çıkış Sıklığı:"
self.GPU_OFFLOAD = "GPU Yük Boşaltma:"
self.AUTO = "Otomatik"
self.GENERATE_IMATRIX = "IMatrix Oluştur"
self.ERROR = "Hata"
self.WARNING = "Uyarı"
self.PROPERTIES = "Özellikler"
self.CANCEL = "İptal"
self.RESTART = "Yeniden Başlat"
self.DELETE = "Sil"
self.CONFIRM_DELETION = "Bu görevi silmek istediğinizden emin misiniz?"
self.TASK_RUNNING_WARNING = (
"Bazı görevler hala çalışıyor. Çıkmak istediğinizden emin misiniz?"
)
self.YES = "Evet"
self.NO = "Hayır"
self.DOWNLOAD_COMPLETE = "İndirme Tamamlandı"
self.CUDA_EXTRACTION_FAILED = "CUDA Çıkarma Başarısız"
self.PRESET_SAVED = "Ön Ayar Kaydedildi"
self.PRESET_LOADED = "Ön Ayar Yüklendi"
self.NO_ASSET_SELECTED = "Varlık seçilmedi"
self.DOWNLOAD_FAILED = "İndirme başarısız"
self.NO_BACKEND_SELECTED = "Arka uç seçilmedi"
self.NO_MODEL_SELECTED = "Model seçilmedi"
self.REFRESH_RELEASES = "Sürümleri Yenile"
self.NO_SUITABLE_CUDA_BACKENDS = "Uygun CUDA arka uçları bulunamadı"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp ikili dosyası indirildi ve {0} konumuna çıkarıldı\nCUDA dosyaları {1} konumuna çıkarıldı"
self.CUDA_FILES_EXTRACTED = "CUDA dosyaları konumuna çıkarıldı"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Çıkarma için uygun bir CUDA arka ucu bulunamadı"
)
self.ERROR_FETCHING_RELEASES = "Sürümleri getirirken hata oluştu: {0}"
self.CONFIRM_DELETION_TITLE = "Silmeyi Onayla"
self.LOG_FOR = "{0} için Günlük"
self.ALL_FILES = "Tüm Dosyalar (*)"
self.GGUF_FILES = "GGUF Dosyaları (*.gguf)"
self.DAT_FILES = "DAT Dosyaları (*.dat)"
self.JSON_FILES = "JSON Dosyaları (*.json)"
self.FAILED_LOAD_PRESET = "Ön ayarı yükleme başarısız: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUF uygulaması başlatılıyor"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF başlatması tamamlandı"
self.REFRESHING_BACKENDS = "Arka uçlar yenileniyor"
self.NO_BACKENDS_AVAILABLE = "Kullanılabilir arka uç yok"
self.FOUND_VALID_BACKENDS = "{0} geçerli arka uç bulundu"
self.SAVING_PRESET = "Ön ayar kaydediliyor"
self.PRESET_SAVED_TO = "Ön ayar {0} konumuna kaydedildi"
self.LOADING_PRESET = "Ön ayar yükleniyor"
self.PRESET_LOADED_FROM = "Ön ayar {0} konumundan yüklendi"
self.ADDING_KV_OVERRIDE = "KV geçersiz kılma ekleniyor: {0}"
self.SAVING_TASK_PRESET = "{0} için görev ön ayarı kaydediliyor"
self.TASK_PRESET_SAVED = "Görev Ön Ayarı Kaydedildi"
self.TASK_PRESET_SAVED_TO = "Görev ön ayarı {0} konumuna kaydedildi"
self.RESTARTING_TASK = "Görev yeniden başlatılıyor: {0}"
self.IN_PROGRESS = "Devam Ediyor"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"İndirme tamamlandı. Şuraya çıkarıldı: {0}"
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp ikili dosyası indirildi ve {0} konumuna çıkarıldı\nCUDA dosyaları {1} konumuna çıkarıldı"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Çıkarma için uygun bir CUDA arka ucu bulunamadı"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp ikili dosyası indirildi ve {0} konumuna çıkarıldı"
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cpp sürümleri yenileniyor"
self.UPDATING_ASSET_LIST = "Varlık listesi güncelleniyor"
self.UPDATING_CUDA_OPTIONS = "CUDA seçenekleri güncelleniyor"
self.STARTING_LLAMACPP_DOWNLOAD = "llama.cpp indirme başlatılıyor"
self.UPDATING_CUDA_BACKENDS = "CUDA arka uçları güncelleniyor"
self.NO_CUDA_BACKEND_SELECTED = "Çıkarma için CUDA arka ucu seçilmedi"
self.EXTRACTING_CUDA_FILES = (
"CUDA dosyaları {0} konumundan {1} konumuna çıkarılıyor"
)
self.DOWNLOAD_ERROR = "İndirme hatası: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Görev bağlam menüsü gösteriliyor"
self.SHOWING_PROPERTIES_FOR_TASK = "Görev için özellikler gösteriliyor: {0}"
self.CANCELLING_TASK = "Görev iptal ediliyor: {0}"
self.CANCELED = "İptal Edildi"
self.DELETING_TASK = "Görev siliniyor: {0}"
self.LOADING_MODELS = "Modeller yükleniyor"
self.LOADED_MODELS = "{0} model yüklendi"
self.BROWSING_FOR_MODELS_DIRECTORY = "Modeller dizinine göz atılıyor"
self.SELECT_MODELS_DIRECTORY = "Modeller Dizini Seç"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Çıkış dizinine göz atılıyor"
self.SELECT_OUTPUT_DIRECTORY = "Çıkış Dizini Seç"
self.BROWSING_FOR_LOGS_DIRECTORY = "Günlükler dizinine göz atılıyor"
self.SELECT_LOGS_DIRECTORY = "Günlükler Dizini Seç"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix dosyasına göz atılıyor"
self.SELECT_IMATRIX_FILE = "IMatrix Dosyası Seç"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU Kullanımı: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Niceleme girişleri doğrulanıyor"
self.MODELS_PATH_REQUIRED = "Modeller yolu gerekli"
self.OUTPUT_PATH_REQUIRED = "Çıkış yolu gerekli"
self.LOGS_PATH_REQUIRED = "Günlükler yolu gerekli"
self.STARTING_MODEL_QUANTIZATION = "Model niceleme başlatılıyor"
self.INPUT_FILE_NOT_EXIST = "Giriş dosyası '{0}' mevcut değil."
self.QUANTIZING_MODEL_TO = "{0} öğesini {1} öğesine niceleme"
self.QUANTIZATION_TASK_STARTED = "{0} için niceleme görevi başlatıldı"
self.ERROR_STARTING_QUANTIZATION = "Niceleme başlatılırken hata oluştu: {0}"
self.UPDATING_MODEL_INFO = "Model bilgileri güncelleniyor: {0}"
self.TASK_FINISHED = "Görev tamamlandı: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Şunun için görev ayrıntıları gösteriliyor: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrix veri dosyasına göz atılıyor"
self.SELECT_DATA_FILE = "Veri Dosyası Seç"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrix model dosyasına göz atılıyor"
self.SELECT_MODEL_FILE = "Model Dosyası Seç"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "IMatrix çıkış dosyasına göz atılıyor"
self.SELECT_OUTPUT_FILE = "Çıkış Dosyası Seç"
self.STARTING_IMATRIX_GENERATION = "IMatrix üretimi başlatılıyor"
self.BACKEND_PATH_NOT_EXIST = "Arka uç yolu mevcut değil: {0}"
self.GENERATING_IMATRIX = "IMatrix oluşturuluyor"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"IMatrix üretimi başlatılırken hata oluştu: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix oluşturma görevi başlatıldı"
self.ERROR_MESSAGE = "Hata: {0}"
self.TASK_ERROR = "Görev hatası: {0}"
self.APPLICATION_CLOSING = "Uygulama kapatılıyor"
self.APPLICATION_CLOSED = "Uygulama kapatıldı"
self.SELECT_QUANTIZATION_TYPE = "Niceleme türünü seçin"
self.ALLOWS_REQUANTIZING = (
"Zaten niceleme yapılmış tensörlerin yeniden nicelemesine izin verir"
)
self.LEAVE_OUTPUT_WEIGHT = (
"output.weight öğesini (yeniden) nicelememiş halde bırakır"
)
self.DISABLE_K_QUANT_MIXTURES = "k-Quant karışımlarını devre dışı bırakın ve tüm tensörleri aynı türe niceleyin"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Quant optimizasyonları için dosyadaki verileri önem matrisi olarak kullanın"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Bu tensörler için önem matrisini kullanın"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Bu tensörler için önem matrisini kullanmayın"
)
self.OUTPUT_TENSOR_TYPE = "Çıkış Tensör Türü:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"output.weight tensörü için bu türü kullanın"
)
self.TOKEN_EMBEDDING_TYPE = "Token Gömme Türü:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Token gömme tensörü için bu türü kullanın"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Nicelemeli modeli girişle aynı parçalarda oluşturacaktır"
)
self.OVERRIDE_MODEL_METADATA = "Model meta verilerini geçersiz kıl"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix oluşturma için giriş veri dosyası"
self.MODEL_TO_BE_QUANTIZED = "Nicelemeli model"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Oluşturulan IMatrix için çıkış yolu"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "IMatrix'in ne sıklıkta kaydedileceği"
self.SET_GPU_OFFLOAD_VALUE = "GPU yük boşaltma değerini ayarla (-ngl)"
self.COMPLETED = "Tamamlandı"
self.REFRESH_MODELS = "Modelleri yenile"
class _Dutch(_Localization):
def __init__(self):
super().__init__()
# Algemene gebruikersinterface
self.WINDOW_TITLE = "AutoGGUF (geautomatiseerde GGUF-modelkwantisering)"
self.RAM_USAGE = "RAM-gebruik:"
self.CPU_USAGE = "CPU-gebruik:"
self.BACKEND = "Llama.cpp Backend:"
self.REFRESH_BACKENDS = "Backends vernieuwen"
self.MODELS_PATH = "Modelpad:"
self.OUTPUT_PATH = "Uitvoerpad:"
self.LOGS_PATH = "Logboekpad:"
self.BROWSE = "Bladeren"
self.AVAILABLE_MODELS = "Beschikbare modellen:"
self.REFRESH_MODELS = "Modellen vernieuwen"
self.STARTUP_ELASPED_TIME = "Initialisatie duurde {0} ms"
# Omgevingsvariabelen
self.DOTENV_FILE_NOT_FOUND = ".env-bestand niet gevonden."
self.COULD_NOT_PARSE_LINE = "Kan regel niet parseren: {0}"
self.ERROR_LOADING_DOTENV = "Fout bij laden van .env: {0}"
# Model importeren
self.IMPORT_MODEL = "Model importeren"
self.SELECT_MODEL_TO_IMPORT = "Selecteer model om te importeren"
self.CONFIRM_IMPORT = "Import bevestigen"
self.IMPORT_MODEL_CONFIRMATION = "Wilt u het model {} importeren?"
self.MODEL_IMPORTED_SUCCESSFULLY = "Model {} succesvol geïmporteerd"
self.IMPORTING_MODEL = "Model importeren"
self.IMPORTED_MODEL_TOOLTIP = "Geïmporteerd model: {}"
# AutoFP8-kwantisering
self.AUTOFP8_QUANTIZATION_TASK_STARTED = "AutoFP8-kwantiseringstaak gestart"
self.ERROR_STARTING_AUTOFP8_QUANTIZATION = (
"Fout bij starten van AutoFP8-kwantisering"
)
self.QUANTIZING_WITH_AUTOFP8 = "Kwantiseren van {0} met AutoFP8"
self.QUANTIZING_TO_WITH_AUTOFP8 = "Kwantiseren van {0} naar {1}"
self.QUANTIZE_TO_FP8_DYNAMIC = "Kwantiseren naar FP8 Dynamic"
self.OPEN_MODEL_FOLDER = "Modelmap openen"
self.QUANTIZE = "Kwantiseren"
self.OPEN_MODEL_FOLDER = "Modelmap openen"
self.INPUT_MODEL = "Invoermodel:"
# GGUF-verificatie
self.INVALID_GGUF_FILE = "Ongeldig GGUF-bestand: {}"
self.SHARDED_MODEL_NAME = "{} (Geshard)"
self.IMPORTED_MODEL_TOOLTIP = "Geïmporteerd model: {}"
self.CONCATENATED_FILE_WARNING = "Dit is een samengevoegd bestandsonderdeel. Het werkt niet met llama-quantize; voeg het bestand eerst samen."
self.CONCATENATED_FILES_FOUND = "{} samengevoegde bestandsonderdelen gevonden. Voeg de bestanden eerst samen."
# Plugins
self.PLUGINS_DIR_NOT_EXIST = (
"Pluginmap '{}' bestaat niet. Er worden geen plugins geladen."
)
self.PLUGINS_DIR_NOT_DIRECTORY = (
"'{}' bestaat, maar is geen map. Er worden geen plugins geladen."
)
self.PLUGIN_LOADED = "Plugin geladen: {} {}"
self.PLUGIN_INCOMPATIBLE = "Plugin {} {} is niet compatibel met AutoGGUF versie {}. Ondersteunde versies: {}"
self.PLUGIN_LOAD_FAILED = "Kan plugin {} niet laden: {}"
self.NO_PLUGINS_LOADED = "Geen plugins geladen."
# GPU-monitoring
self.GPU_USAGE = "GPU-gebruik:"
self.GPU_USAGE_FORMAT = "GPU: {:.1f}% | VRAM: {:.1f}% ({} MB / {} MB)"
self.GPU_DETAILS = "GPU-details"
self.GPU_USAGE_OVER_TIME = "GPU-gebruik in de tijd"
self.VRAM_USAGE_OVER_TIME = "VRAM-gebruik in de tijd"
self.PERCENTAGE = "Percentage"
self.TIME = "Tijd (s)"
self.NO_GPU_DETECTED = "Geen GPU gedetecteerd"
self.SELECT_GPU = "Selecteer GPU"
self.AMD_GPU_NOT_SUPPORTED = "AMD GPU gedetecteerd, maar niet ondersteund"
# Kwantisering
self.QUANTIZATION_TYPE = "Kwantiseringstype:"
self.ALLOW_REQUANTIZE = "Herkwantisering toestaan"
self.LEAVE_OUTPUT_TENSOR = "Uitvoertensor behouden"
self.PURE = "Zuiver"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Gewichten opnemen:"
self.EXCLUDE_WEIGHTS = "Gewichten uitsluiten:"
self.USE_OUTPUT_TENSOR_TYPE = "Uitvoertensortype gebruiken"
self.USE_TOKEN_EMBEDDING_TYPE = "Token Embedding-type gebruiken"
self.KEEP_SPLIT = "Splitsing behouden"
self.KV_OVERRIDES = "KV-overschrijvingen:"
self.ADD_NEW_OVERRIDE = "Nieuwe overschrijving toevoegen"
self.QUANTIZE_MODEL = "Model kwantiseren"
self.EXTRA_ARGUMENTS = "Extra argumenten:"
self.EXTRA_ARGUMENTS_LABEL = "Aanvullende opdrachtregelargumenten"
self.QUANTIZATION_COMMAND = "Kwantiseringsopdracht"
# Voorinstellingen
self.SAVE_PRESET = "Voorinstelling opslaan"
self.LOAD_PRESET = "Voorinstelling laden"
# Taken
self.TASKS = "Taken:"
# llama.cpp downloaden
self.DOWNLOAD_LLAMACPP = "Download llama.cpp"
self.SELECT_RELEASE = "Selecteer release:"
self.SELECT_ASSET = "Selecteer asset:"
self.EXTRACT_CUDA_FILES = "CUDA-bestanden uitpakken"
self.SELECT_CUDA_BACKEND = "Selecteer CUDA-backend:"
self.DOWNLOAD = "Downloaden"
self.REFRESH_RELEASES = "Releases vernieuwen"
# IMatrix-generatie
self.IMATRIX_GENERATION = "IMatrix-generatie"
self.DATA_FILE = "Gegevensbestand:"
self.MODEL = "Model:"
self.OUTPUT = "Uitvoer:"
self.OUTPUT_FREQUENCY = "Uitvoerfrequentie:"
self.GPU_OFFLOAD = "GPU-offload:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "IMatrix genereren"
self.CONTEXT_SIZE = "Contextgrootte:"
self.CONTEXT_SIZE_FOR_IMATRIX = "Contextgrootte voor IMatrix-generatie"
self.THREADS = "Threads:"
self.NUMBER_OF_THREADS_FOR_IMATRIX = "Aantal threads voor IMatrix-generatie"
self.IMATRIX_GENERATION_COMMAND = "IMatrix-generatieopdracht"
# LoRA-conversie
self.LORA_CONVERSION = "LoRA-conversie"
self.LORA_INPUT_PATH = "LoRA-invoerpad"
self.LORA_OUTPUT_PATH = "LoRA-uitvoerpad"
self.SELECT_LORA_INPUT_DIRECTORY = "Selecteer LoRA-invoermap"
self.SELECT_LORA_OUTPUT_FILE = "Selecteer LoRA-uitvoerbestand"
self.CONVERT_LORA = "LoRA converteren"
self.LORA_CONVERSION_COMMAND = "LoRA-conversieopdracht"
# LoRA-export
self.EXPORT_LORA = "LoRA exporteren"
self.GGML_LORA_ADAPTERS = "GGML LoRA-adapters"
self.SELECT_LORA_ADAPTER_FILES = "Selecteer LoRA-adapterbestanden"
self.ADD_ADAPTER = "Adapter toevoegen"
self.DELETE_ADAPTER = "Verwijderen"
self.LORA_SCALE = "LoRA-schaal"
self.ENTER_LORA_SCALE_VALUE = "Voer LoRA-schaalwaarde in (optioneel)"
self.NUMBER_OF_THREADS_FOR_LORA_EXPORT = "Aantal threads voor LoRA-export"
self.LORA_EXPORT_COMMAND = "LoRA-exportopdracht"
# HuggingFace naar GGUF-conversie
self.HF_TO_GGUF_CONVERSION = "HuggingFace naar GGUF-conversie"
self.MODEL_DIRECTORY = "Modelmap:"
self.OUTPUT_FILE = "Uitvoerbestand:"
self.OUTPUT_TYPE = "Uitvoertype:"
self.VOCAB_ONLY = "Alleen vocabulaire"
self.USE_TEMP_FILE = "Tijdelijk bestand gebruiken"
self.NO_LAZY_EVALUATION = "Geen luie evaluatie"
self.MODEL_NAME = "Modelnaam:"
self.VERBOSE = "Uitgebreid"
self.SPLIT_MAX_SIZE = "Maximale splitsingsgrootte:"
self.DRY_RUN = "Droog uitvoeren"
self.CONVERT_HF_TO_GGUF = "HF naar GGUF converteren"
self.SELECT_HF_MODEL_DIRECTORY = "Selecteer HuggingFace-modelmap"
self.BROWSE_FOR_HF_MODEL_DIRECTORY = "Bladeren naar HuggingFace-modelmap"
self.BROWSE_FOR_HF_TO_GGUF_OUTPUT = (
"Bladeren naar HuggingFace naar GGUF-uitvoerbestand"
)
# Update controleren
self.UPDATE_AVAILABLE = "Update beschikbaar"
self.NEW_VERSION_AVAILABLE = "Er is een nieuwe versie beschikbaar: {}"
self.DOWNLOAD_NEW_VERSION = "Downloaden?"
self.ERROR_CHECKING_FOR_UPDATES = "Fout bij controleren op updates:"
self.CHECKING_FOR_UPDATES = "Controleren op updates"
# Algemene berichten
self.ERROR = "Fout"
self.WARNING = "Waarschuwing"
self.PROPERTIES = "Eigenschappen"
self.CANCEL = "Annuleren"
self.RESTART = "Opnieuw starten"
self.DELETE = "Verwijderen"
self.CONFIRM_DELETION = "Weet u zeker dat u deze taak wilt verwijderen?"
self.TASK_RUNNING_WARNING = (
"Sommige taken zijn nog steeds actief. Weet u zeker dat u wilt afsluiten?"
)
self.YES = "Ja"
self.NO = "Nee"
self.COMPLETED = "Voltooid"
# Bestandstypen
self.ALL_FILES = "Alle bestanden (*)"
self.GGUF_FILES = "GGUF-bestanden (*.gguf)"
self.DAT_FILES = "DAT-bestanden (*.dat)"
self.JSON_FILES = "JSON-bestanden (*.json)"
self.BIN_FILES = "Binaire bestanden (*.bin)"
self.LORA_FILES = "LoRA-bestanden (*.bin *.gguf)"
self.GGUF_AND_BIN_FILES = "GGUF- en binaire bestanden (*.gguf *.bin)"
self.SHARDED = "geshard"
# Statusberichten
self.DOWNLOAD_COMPLETE = "Download voltooid"
self.CUDA_EXTRACTION_FAILED = "CUDA-extractie mislukt"
self.PRESET_SAVED = "Voorinstelling opgeslagen"
self.PRESET_LOADED = "Voorinstelling geladen"
self.NO_ASSET_SELECTED = "Geen asset geselecteerd"
self.DOWNLOAD_FAILED = "Download mislukt"
self.NO_BACKEND_SELECTED = "Geen backend geselecteerd"
self.NO_MODEL_SELECTED = "Geen model geselecteerd"
self.NO_SUITABLE_CUDA_BACKENDS = "Geen geschikte CUDA-backends gevonden"
self.IN_PROGRESS = "Bezig"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"llama.cpp binair bestand gedownload en uitgepakt naar {0}"
)
self.CUDA_FILES_EXTRACTED = "CUDA-bestanden uitgepakt naar"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Geen geschikte CUDA-backend gevonden voor extractie"
)
self.ERROR_FETCHING_RELEASES = "Fout bij ophalen van releases: {0}"
self.CONFIRM_DELETION_TITLE = "Verwijdering bevestigen"
self.LOG_FOR = "Logboek voor {0}"
self.FAILED_TO_LOAD_PRESET = "Kan voorinstelling niet laden: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUF-applicatie initialiseren"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF-initialisatie voltooid"
self.REFRESHING_BACKENDS = "Backends vernieuwen"
self.NO_BACKENDS_AVAILABLE = "Geen backends beschikbaar"
self.FOUND_VALID_BACKENDS = "{0} geldige backends gevonden"
self.SAVING_PRESET = "Voorinstelling opslaan"
self.PRESET_SAVED_TO = "Voorinstelling opgeslagen naar {0}"
self.LOADING_PRESET = "Voorinstelling laden"
self.PRESET_LOADED_FROM = "Voorinstelling geladen van {0}"
self.ADDING_KV_OVERRIDE = "KV-overschrijving toevoegen: {0}"
self.SAVING_TASK_PRESET = "Taakvoorinstelling opslaan voor {0}"
self.TASK_PRESET_SAVED = "Taakvoorinstelling opgeslagen"
self.TASK_PRESET_SAVED_TO = "Taakvoorinstelling opgeslagen naar {0}"
self.RESTARTING_TASK = "Taak opnieuw starten: {0}"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download voltooid. Uitgepakt naar: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binair bestand gedownload en uitgepakt naar {0}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Geen geschikte CUDA-backend gevonden voor extractie"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binair bestand gedownload en uitgepakt naar {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cpp releases vernieuwen"
self.UPDATING_ASSET_LIST = "Assetlijst bijwerken"
self.UPDATING_CUDA_OPTIONS = "CUDA-opties bijwerken"
self.STARTING_LLAMACPP_DOWNLOAD = "llama.cpp download starten"
self.UPDATING_CUDA_BACKENDS = "CUDA-backends bijwerken"
self.NO_CUDA_BACKEND_SELECTED = "Geen CUDA-backend geselecteerd voor extractie"
self.EXTRACTING_CUDA_FILES = "CUDA-bestanden uitpakken van {0} naar {1}"
self.DOWNLOAD_ERROR = "Downloadfout: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Contextmenu van taak weergeven"
self.SHOWING_PROPERTIES_FOR_TASK = "Eigenschappen weergeven voor taak: {0}"
self.CANCELLING_TASK = "Taak annuleren: {0}"
self.CANCELED = "Geannuleerd"
self.DELETING_TASK = "Taak verwijderen: {0}"
self.LOADING_MODELS = "Modellen laden"
self.LOADED_MODELS = "{0} modellen geladen"
self.BROWSING_FOR_MODELS_DIRECTORY = "Bladeren naar modelmap"
self.SELECT_MODELS_DIRECTORY = "Selecteer modelmap"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Bladeren naar uitvoermap"
self.SELECT_OUTPUT_DIRECTORY = "Selecteer uitvoermap"
self.BROWSING_FOR_LOGS_DIRECTORY = "Bladeren naar logboekmap"
self.SELECT_LOGS_DIRECTORY = "Selecteer logboekmap"
self.BROWSING_FOR_IMATRIX_FILE = "Bladeren naar IMatrix-bestand"
self.SELECT_IMATRIX_FILE = "Selecteer IMatrix-bestand"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU-gebruik: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Kwantiseringsinvoer valideren"
self.MODELS_PATH_REQUIRED = "Modelpad is vereist"
self.OUTPUT_PATH_REQUIRED = "Uitvoerpad is vereist"
self.LOGS_PATH_REQUIRED = "Logboekpad is vereist"
self.STARTING_MODEL_QUANTIZATION = "Modelkwantisering starten"
self.INPUT_FILE_NOT_EXIST = "Invoerbestand '{0}' bestaat niet."
self.QUANTIZING_MODEL_TO = "Kwantiseren van {0} naar {1}"
self.QUANTIZATION_TASK_STARTED = "Kwantiseringstaak gestart voor {0}"
self.ERROR_STARTING_QUANTIZATION = "Fout bij starten van kwantisering: {0}"
self.UPDATING_MODEL_INFO = "Modelinformatie bijwerken: {0}"
self.TASK_FINISHED = "Taak voltooid: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Taakdetails weergeven voor: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Bladeren naar IMatrix-gegevensbestand"
self.SELECT_DATA_FILE = "Selecteer gegevensbestand"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Bladeren naar IMatrix-modelbestand"
self.SELECT_MODEL_FILE = "Selecteer modelbestand"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Bladeren naar IMatrix-uitvoerbestand"
self.SELECT_OUTPUT_FILE = "Selecteer uitvoerbestand"
self.STARTING_IMATRIX_GENERATION = "IMatrix-generatie starten"
self.BACKEND_PATH_NOT_EXIST = "Backendpad bestaat niet: {0}"
self.GENERATING_IMATRIX = "IMatrix genereren"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Fout bij starten van IMatrix-generatie: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix-generatietaak gestart"
self.ERROR_MESSAGE = "Fout: {0}"
self.TASK_ERROR = "Taakfout: {0}"
self.APPLICATION_CLOSING = "Applicatie wordt afgesloten"
self.APPLICATION_CLOSED = "Applicatie afgesloten"
self.SELECT_QUANTIZATION_TYPE = "Selecteer het kwantiseringstype"
self.ALLOWS_REQUANTIZING = "Maakt het mogelijk om tensoren die al gekwantiseerd zijn opnieuw te kwantiseren"
self.LEAVE_OUTPUT_WEIGHT = "Laat output.weight niet (opnieuw) gekwantiseerd"
self.DISABLE_K_QUANT_MIXTURES = "Schakel k-kwantmengsels uit en kwantiseer alle tensoren naar hetzelfde type"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Gebruik gegevens in bestand als belangrijkheidsmatrix voor kwantumoptimalisaties"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Gebruik belangrijkheidsmatrix voor deze tensoren"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Gebruik geen belangrijkheidsmatrix voor deze tensoren"
)
self.OUTPUT_TENSOR_TYPE = "Uitvoertensortype:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Gebruik dit type voor de output.weight-tensor"
)
self.TOKEN_EMBEDDING_TYPE = "Token Embedding-type:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Gebruik dit type voor de token embeddings-tensor"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Genereert gekwantiseerd model in dezelfde shards als invoer"
)
self.OVERRIDE_MODEL_METADATA = "Modelmetadata overschrijven"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Invoergegevensbestand voor IMatrix-generatie"
)
self.MODEL_TO_BE_QUANTIZED = "Te kwantiseren model"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Uitvoerpad voor de gegenereerde IMatrix"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Hoe vaak de IMatrix moet worden opgeslagen"
self.SET_GPU_OFFLOAD_VALUE = "Stel GPU-offloadwaarde in (-ngl)"
self.STARTING_LORA_CONVERSION = "LoRA-conversie starten"
self.LORA_INPUT_PATH_REQUIRED = "LoRA-invoerpad is vereist."
self.LORA_OUTPUT_PATH_REQUIRED = "LoRA-uitvoerpad is vereist."
self.ERROR_STARTING_LORA_CONVERSION = "Fout bij starten van LoRA-conversie: {}"
self.LORA_CONVERSION_TASK_STARTED = "LoRA-conversietaak gestart."
self.BROWSING_FOR_LORA_INPUT_DIRECTORY = "Bladeren naar LoRA-invoermap..."
self.BROWSING_FOR_LORA_OUTPUT_FILE = "Bladeren naar LoRA-uitvoerbestand..."
self.CONVERTING_LORA = "LoRA-conversie"
self.LORA_CONVERSION_FINISHED = "LoRA-conversie voltooid."
self.LORA_FILE_MOVED = "LoRA-bestand verplaatst van {} naar {}."
self.LORA_FILE_NOT_FOUND = "LoRA-bestand niet gevonden: {}."
self.ERROR_MOVING_LORA_FILE = "Fout bij verplaatsen van LoRA-bestand: {}"
self.MODEL_PATH_REQUIRED = "Modelpad is vereist."
self.AT_LEAST_ONE_LORA_ADAPTER_REQUIRED = (
"Minstens één LoRA-adapter is vereist."
)
self.INVALID_LORA_SCALE_VALUE = "Ongeldige LoRA-schaalwaarde."
self.ERROR_STARTING_LORA_EXPORT = "Fout bij starten van LoRA-export: {}"
self.LORA_EXPORT_TASK_STARTED = "LoRA-exporttaak gestart."
self.EXPORTING_LORA = "LoRA exporteren..."
self.BROWSING_FOR_EXPORT_LORA_MODEL_FILE = (
"Bladeren naar LoRA-modelbestand voor export..."
)
self.BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE = (
"Bladeren naar LoRA-uitvoerbestand voor export..."
)
self.ADDING_LORA_ADAPTER = "LoRA-adapter toevoegen..."
self.DELETING_LORA_ADAPTER = "LoRA-adapter verwijderen..."
self.SELECT_LORA_ADAPTER_FILE = "Selecteer LoRA-adapterbestand"
self.STARTING_LORA_EXPORT = "LoRA-export starten..."
self.SELECT_OUTPUT_TYPE = "Selecteer uitvoertype (GGUF of GGML)"
self.BASE_MODEL = "Basismodel"
self.SELECT_BASE_MODEL_FILE = "Selecteer basismodelbestand (GGUF)"
self.BASE_MODEL_PATH_REQUIRED = "Basismodelpad is vereist voor GGUF-uitvoer."
self.BROWSING_FOR_BASE_MODEL_FILE = "Bladeren naar basismodelbestand..."
self.SELECT_BASE_MODEL_FOLDER = "Selecteer basismodelmap (met safetensors)"
self.BROWSING_FOR_BASE_MODEL_FOLDER = "Bladeren naar basismodelmap..."
self.LORA_CONVERSION_FROM_TO = "LoRA-conversie van {} naar {}"
self.GENERATING_IMATRIX_FOR = "IMatrix genereren voor {}"
self.MODEL_PATH_REQUIRED_FOR_IMATRIX = (
"Modelpad is vereist voor IMatrix-generatie."
)
self.NO_ASSET_SELECTED_FOR_CUDA_CHECK = (
"Geen asset geselecteerd voor CUDA-controle"
)
self.NO_QUANTIZATION_TYPE_SELECTED = "Geen kwantiseringstype geselecteerd. Selecteer ten minste één kwantiseringstype."
self.STARTING_HF_TO_GGUF_CONVERSION = "HuggingFace naar GGUF-conversie starten"
self.MODEL_DIRECTORY_REQUIRED = "Modelmap is vereist"
self.HF_TO_GGUF_CONVERSION_COMMAND = "HF naar GGUF-conversieopdracht: {}"
self.CONVERTING_TO_GGUF = "Converteren van {} naar GGUF"
self.ERROR_STARTING_HF_TO_GGUF_CONVERSION = (
"Fout bij starten van HuggingFace naar GGUF-conversie: {}"
)
self.HF_TO_GGUF_CONVERSION_TASK_STARTED = (
"HuggingFace naar GGUF-conversietaak gestart"
)
class _Finnish(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (automaattinen GGUF-mallien kvantisoija)"
self.RAM_USAGE = "RAM-muistin käyttö:"
self.CPU_USAGE = "CPU:n käyttö:"
self.BACKEND = "Llama.cpp-taustaosa:"
self.REFRESH_BACKENDS = "Päivitä taustaosat"
self.MODELS_PATH = "Mallien polku:"
self.OUTPUT_PATH = "Tulostepolku:"
self.LOGS_PATH = "Lokien polku:"
self.BROWSE = "Selaa"
self.AVAILABLE_MODELS = "Käytettävissä olevat mallit:"
self.QUANTIZATION_TYPE = "Kvantisointityyppi:"
self.ALLOW_REQUANTIZE = "Salli uudelleenkvantisointi"
self.LEAVE_OUTPUT_TENSOR = "Jätä tulostensori"
self.PURE = "Puhdas"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Sisällytä painot:"
self.EXCLUDE_WEIGHTS = "Sulje pois painot:"
self.USE_OUTPUT_TENSOR_TYPE = "Käytä tulostensorin tyyppiä"
self.USE_TOKEN_EMBEDDING_TYPE = "Käytä token-upotustyyppiä"
self.KEEP_SPLIT = "Säilytä jako"
self.KV_OVERRIDES = "KV-ohitukset:"
self.ADD_NEW_OVERRIDE = "Lisää uusi ohitus"
self.QUANTIZE_MODEL = "Kvantisoi malli"
self.SAVE_PRESET = "Tallenna esiasetus"
self.LOAD_PRESET = "Lataa esiasetus"
self.TASKS = "Tehtävät:"
self.DOWNLOAD_LLAMACPP = "Lataa llama.cpp"
self.SELECT_RELEASE = "Valitse julkaisu:"
self.SELECT_ASSET = "Valitse resurssi:"
self.EXTRACT_CUDA_FILES = "Pura CUDA-tiedostot"
self.SELECT_CUDA_BACKEND = "Valitse CUDA-taustaosa:"
self.DOWNLOAD = "Lataa"
self.IMATRIX_GENERATION = "IMatrix-generointi"
self.DATA_FILE = "Datatiedosto:"
self.MODEL = "Malli:"
self.OUTPUT = "Tuloste:"
self.OUTPUT_FREQUENCY = "Tulostetaajuus:"
self.GPU_OFFLOAD = "GPU-kuormansiirto:"
self.AUTO = "Automaattinen"
self.GENERATE_IMATRIX = "Generoi IMatrix"
self.ERROR = "Virhe"
self.WARNING = "Varoitus"
self.PROPERTIES = "Ominaisuudet"
self.CANCEL = "Peruuta"
self.RESTART = "Käynnistä uudelleen"
self.DELETE = "Poista"
self.CONFIRM_DELETION = "Haluatko varmasti poistaa tämän tehtävän?"
self.TASK_RUNNING_WARNING = (
"Jotkin tehtävät ovat vielä käynnissä. Haluatko varmasti lopettaa?"
)
self.YES = "Kyllä"
self.NO = "Ei"
self.DOWNLOAD_COMPLETE = "Lataus valmis"
self.CUDA_EXTRACTION_FAILED = "CUDA-purku epäonnistui"
self.PRESET_SAVED = "Esiasetus tallennettu"
self.PRESET_LOADED = "Esiasetus ladattu"
self.NO_ASSET_SELECTED = "Ei resurssia valittuna"
self.DOWNLOAD_FAILED = "Lataus epäonnistui"
self.NO_BACKEND_SELECTED = "Ei taustaosaa valittuna"
self.NO_MODEL_SELECTED = "Ei mallia valittuna"
self.REFRESH_RELEASES = "Päivitä julkaisut"
self.NO_SUITABLE_CUDA_BACKENDS = "Sopivia CUDA-taustaosoja ei löytynyt"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp-binaaritiedosto ladattu ja purettu kansioon {0}\nCUDA-tiedostot purettu kansioon {1}"
self.CUDA_FILES_EXTRACTED = "CUDA-tiedostot purettu kansioon"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Sopivaa CUDA-taustaosaa purkua varten ei löytynyt"
)
self.ERROR_FETCHING_RELEASES = "Virhe haettaessa julkaisuja: {0}"
self.CONFIRM_DELETION_TITLE = "Vahvista poisto"
self.LOG_FOR = "Loki kohteelle {0}"
self.ALL_FILES = "Kaikki tiedostot (*)"
self.GGUF_FILES = "GGUF-tiedostot (*.gguf)"
self.DAT_FILES = "DAT-tiedostot (*.dat)"
self.JSON_FILES = "JSON-tiedostot (*.json)"
self.FAILED_LOAD_PRESET = "Esiasetuksen lataus epäonnistui: {0}"
self.INITIALIZING_AUTOGGUF = "Alustetaan AutoGGUF-sovellusta"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF-alustus valmis"
self.REFRESHING_BACKENDS = "Päivitetään taustaosoja"
self.NO_BACKENDS_AVAILABLE = "Ei käytettävissä olevia taustaosoja"
self.FOUND_VALID_BACKENDS = "Löydettiin {0} kelvollista taustaosaa"
self.SAVING_PRESET = "Tallennetaan esiasetusta"
self.PRESET_SAVED_TO = "Esiasetus tallennettu kansioon {0}"
self.LOADING_PRESET = "Ladataan esiasetusta"
self.PRESET_LOADED_FROM = "Esiasetus ladattu kansiosta {0}"
self.ADDING_KV_OVERRIDE = "Lisätään KV-ohitus: {0}"
self.SAVING_TASK_PRESET = "Tallennetaan tehtäväesiasetusta kohteelle {0}"
self.TASK_PRESET_SAVED = "Tehtäväesiasetus tallennettu"
self.TASK_PRESET_SAVED_TO = "Tehtäväesiasetus tallennettu kansioon {0}"
self.RESTARTING_TASK = "Käynnistetään tehtävä uudelleen: {0}"
self.IN_PROGRESS = "Käynnissä"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Lataus valmis. Purettu kansioon: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp-binaaritiedosto ladattu ja purettu kansioon {0}\nCUDA-tiedostot purettu kansioon {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Sopivaa CUDA-taustaosaa purkua varten ei löytynyt"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp-binaaritiedosto ladattu ja purettu kansioon {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Päivitetään llama.cpp-julkaisuja"
self.UPDATING_ASSET_LIST = "Päivitetään resurssilistaa"
self.UPDATING_CUDA_OPTIONS = "Päivitetään CUDA-asetuksia"
self.STARTING_LLAMACPP_DOWNLOAD = "Aloitetaan llama.cpp:n lataus"
self.UPDATING_CUDA_BACKENDS = "Päivitetään CUDA-taustaosoja"
self.NO_CUDA_BACKEND_SELECTED = "Ei CUDA-taustaosaa valittuna purkua varten"
self.EXTRACTING_CUDA_FILES = (
"Puretaan CUDA-tiedostoja kansiosta {0} kansioon {1}"
)
self.DOWNLOAD_ERROR = "Latausvirhe: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Näytetään tehtäväkontekstivalikko"
self.SHOWING_PROPERTIES_FOR_TASK = "Näytetään tehtävän ominaisuudet: {0}"
self.CANCELLING_TASK = "Peruutetaan tehtävää: {0}"
self.CANCELED = "Peruutettu"
self.DELETING_TASK = "Poistetaan tehtävää: {0}"
self.LOADING_MODELS = "Ladataan malleja"
self.LOADED_MODELS = "{0} mallia ladattu"
self.BROWSING_FOR_MODELS_DIRECTORY = "Selaillaan mallikansiota"
self.SELECT_MODELS_DIRECTORY = "Valitse mallikansio"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Selaillaan tulostekansiota"
self.SELECT_OUTPUT_DIRECTORY = "Valitse tulostekansio"
self.BROWSING_FOR_LOGS_DIRECTORY = "Selaillaan lokikansiota"
self.SELECT_LOGS_DIRECTORY = "Valitse lokikansio"
self.BROWSING_FOR_IMATRIX_FILE = "Selaillaan IMatrix-tiedostoa"
self.SELECT_IMATRIX_FILE = "Valitse IMatrix-tiedosto"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} Mt / {2} Mt)"
self.CPU_USAGE_FORMAT = "CPU:n käyttö: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Vahvistetaan kvantisointisyötteet"
self.MODELS_PATH_REQUIRED = "Mallien polku on pakollinen"
self.OUTPUT_PATH_REQUIRED = "Tulostepolku on pakollinen"
self.LOGS_PATH_REQUIRED = "Lokien polku on pakollinen"
self.STARTING_MODEL_QUANTIZATION = "Aloitetaan mallin kvantisointi"
self.INPUT_FILE_NOT_EXIST = "Syötetiedostoa '{0}' ei ole."
self.QUANTIZING_MODEL_TO = "Kvantisoidaan mallia {0} muotoon {1}"
self.QUANTIZATION_TASK_STARTED = (
"Kvantisointitehtävä käynnistetty kohteelle {0}"
)
self.ERROR_STARTING_QUANTIZATION = "Virhe kvantisoinnin käynnistyksessä: {0}"
self.UPDATING_MODEL_INFO = "Päivitetään mallitietoja: {0}"
self.TASK_FINISHED = "Tehtävä valmis: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Näytetään tehtävän tiedot kohteelle: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Selaillaan IMatrix-datatiedostoa"
self.SELECT_DATA_FILE = "Valitse datatiedosto"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Selaillaan IMatrix-mallitiedostoa"
self.SELECT_MODEL_FILE = "Valitse mallitiedosto"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Selaillaan IMatrix-tulostetiedostoa"
self.SELECT_OUTPUT_FILE = "Valitse tulostetiedosto"
self.STARTING_IMATRIX_GENERATION = "Aloitetaan IMatrix-generointi"
self.BACKEND_PATH_NOT_EXIST = "Taustaosan polkua ei ole: {0}"
self.GENERATING_IMATRIX = "Generoidaan IMatrixia"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Virhe IMatrix-generoinnin käynnistyksessä: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix-generointi käynnistetty"
self.ERROR_MESSAGE = "Virhe: {0}"
self.TASK_ERROR = "Tehtävävirhe: {0}"
self.APPLICATION_CLOSING = "Sovellus suljetaan"
self.APPLICATION_CLOSED = "Sovellus suljettu"
self.SELECT_QUANTIZATION_TYPE = "Valitse kvantisointityyppi"
self.ALLOWS_REQUANTIZING = (
"Sallii jo kvantisoitujen tensoreiden uudelleenkvantisoinnin"
)
self.LEAVE_OUTPUT_WEIGHT = (
"Jättää output.weight-tensorin (uudelleen)kvantisoimatta"
)
self.DISABLE_K_QUANT_MIXTURES = "Poista käytöstä k-kvanttisekoitukset ja kvantisoi kaikki tensorit samaan tyyppiin"
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"Käytä tiedoston tietoja kvantisoinnin optimoinnin tärkeysmatriisina"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Käytä tärkeysmatriisia näille tensoreille"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Älä käytä tärkeysmatriisia näille tensoreille"
)
self.OUTPUT_TENSOR_TYPE = "Tulostensorin tyyppi:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Käytä tätä tyyppiä output.weight-tensorille"
)
self.TOKEN_EMBEDDING_TYPE = "Token-upotustyyppi:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Käytä tätä tyyppiä token-upotustensorille"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Generoi kvantisoidun mallin samoihin osiin kuin syöte"
)
self.OVERRIDE_MODEL_METADATA = "Ohita mallitiedot"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix-generoinnin syötedatatiedosto"
self.MODEL_TO_BE_QUANTIZED = "Kvantisoitava malli"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Generoidun IMatrixin tulostepolku"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Kuinka usein IMatrix tallennetaan"
self.SET_GPU_OFFLOAD_VALUE = "Aseta GPU-kuormansiirron arvo (-ngl)"
self.COMPLETED = "Valmis"
self.REFRESH_MODELS = "Päivitä mallit"
class _Bengali(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (স্বয়ংক্রিয় GGUF মডেল কোয়ান্টাইজার)"
self.RAM_USAGE = "RAM ব্যবহার:"
self.CPU_USAGE = "CPU ব্যবহার:"
self.BACKEND = "Llama.cpp ব্যাকএন্ড:"
self.REFRESH_BACKENDS = "ব্যাকএন্ড রিফ্রেশ করুন"
self.MODELS_PATH = "মডেল পাথ:"
self.OUTPUT_PATH = "আউটপুট পাথ:"
self.LOGS_PATH = "লগ পাথ:"
self.BROWSE = "ব্রাউজ করুন"
self.AVAILABLE_MODELS = "উপলব্ধ মডেল:"
self.QUANTIZATION_TYPE = "কোয়ান্টাইজেশন ধরণ:"
self.ALLOW_REQUANTIZE = "পুনরায় কোয়ান্টাইজ করার অনুমতি দিন"
self.LEAVE_OUTPUT_TENSOR = "আউটপুট টেন্সর রেখে দিন"
self.PURE = "বিশুদ্ধ"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "ওজন অন্তর্ভুক্ত করুন:"
self.EXCLUDE_WEIGHTS = "ওজন বাদ দিন:"
self.USE_OUTPUT_TENSOR_TYPE = "আউটপুট টেন্সর ধরণ ব্যবহার করুন"
self.USE_TOKEN_EMBEDDING_TYPE = "টোকেন এম্বেডিং ধরণ ব্যবহার করুন"
self.KEEP_SPLIT = "বিভাজন রাখুন"
self.KV_OVERRIDES = "KV ওভাররাইড:"
self.ADD_NEW_OVERRIDE = "নতুন ওভাররাইড যুক্ত করুন"
self.QUANTIZE_MODEL = "মডেল কোয়ান্টাইজ করুন"
self.SAVE_PRESET = "প্রিসেট সংরক্ষণ করুন"
self.LOAD_PRESET = "প্রিসেট লোড করুন"
self.TASKS = "কার্য:"
self.DOWNLOAD_LLAMACPP = "llama.cpp ডাউনলোড করুন"
self.SELECT_RELEASE = "রিলিজ নির্বাচন করুন:"
self.SELECT_ASSET = "অ্যাসেট নির্বাচন করুন:"
self.EXTRACT_CUDA_FILES = "CUDA ফাইলগুলি বের করুন"
self.SELECT_CUDA_BACKEND = "CUDA ব্যাকএন্ড নির্বাচন করুন:"
self.DOWNLOAD = "ডাউনলোড করুন"
self.IMATRIX_GENERATION = "IMatrix জেনারেশন"
self.DATA_FILE = "ডেটা ফাইল:"
self.MODEL = "মডেল:"
self.OUTPUT = "আউটপুট:"
self.OUTPUT_FREQUENCY = "আউটপুট ফ্রিকোয়েন্সি:"
self.GPU_OFFLOAD = "GPU অফলোড:"
self.AUTO = "স্বয়ংক্রিয়"
self.GENERATE_IMATRIX = "IMatrix তৈরি করুন"
self.ERROR = "ত্রুটি"
self.WARNING = "সতর্কীকরণ"
self.PROPERTIES = "বৈশিষ্ট্য"
self.CANCEL = "বাতিল করুন"
self.RESTART = "পুনরায় আরম্ভ করুন"
self.DELETE = "মুছে ফেলুন"
self.CONFIRM_DELETION = "আপনি কি নিশ্চিত যে আপনি এই কাজটি মুছে ফেলতে চান?"
self.TASK_RUNNING_WARNING = (
"কিছু কাজ এখনও চলছে। আপনি কি নিশ্চিত যে আপনি প্রস্থান করতে চান?"
)
self.YES = "হ্যাঁ"
self.NO = "না"
self.DOWNLOAD_COMPLETE = "ডাউনলোড সম্পন্ন"
self.CUDA_EXTRACTION_FAILED = "CUDA এক্সট্র্যাকশন ব্যর্থ"
self.PRESET_SAVED = "প্রিসেট সংরক্ষিত"
self.PRESET_LOADED = "প্রিসেট লোড করা হয়েছে"
self.NO_ASSET_SELECTED = "কোন অ্যাসেট নির্বাচন করা হয়নি"
self.DOWNLOAD_FAILED = "ডাউনলোড ব্যর্থ"
self.NO_BACKEND_SELECTED = "কোন ব্যাকএন্ড নির্বাচন করা হয়নি"
self.NO_MODEL_SELECTED = "কোন মডেল নির্বাচন করা হয়নি"
self.REFRESH_RELEASES = "রিলিজগুলি রিফ্রেশ করুন"
self.NO_SUITABLE_CUDA_BACKENDS = "কোন উপযুক্ত CUDA ব্যাকএন্ড পাওয়া যায়নি"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp বাইনারি ফাইল ডাউনলোড এবং {0} এ বের করা হয়েছে\nCUDA ফাইলগুলি {1} এ বের করা হয়েছে"
self.CUDA_FILES_EXTRACTED = "CUDA ফাইলগুলি তে বের করা হয়েছে"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"এক্সট্র্যাকশনের জন্য কোন উপযুক্ত CUDA ব্যাকএন্ড পাওয়া যায়নি"
)
self.ERROR_FETCHING_RELEASES = "রিলিজগুলি আনতে ত্রুটি: {0}"
self.CONFIRM_DELETION_TITLE = "মুছে ফেলা নিশ্চিত করুন"
self.LOG_FOR = "{0} এর জন্য লগ"
self.ALL_FILES = "সমস্ত ফাইল (*)"
self.GGUF_FILES = "GGUF ফাইল (*.gguf)"
self.DAT_FILES = "DAT ফাইল (*.dat)"
self.JSON_FILES = "JSON ফাইল (*.json)"
self.FAILED_LOAD_PRESET = "প্রিসেট লোড করতে ব্যর্থ: {0}"
self.INITIALIZING_AUTOGGUF = "AutoGGUF অ্যাপ্লিকেশন শুরু হচ্ছে"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF ইনিশিয়ালাইজেশন সম্পন্ন"
self.REFRESHING_BACKENDS = "ব্যাকএন্ডগুলি রিফ্রেশ করা হচ্ছে"
self.NO_BACKENDS_AVAILABLE = "কোন ব্যাকএন্ড উপলব্ধ নেই"
self.FOUND_VALID_BACKENDS = "{0} টি বৈধ ব্যাকএন্ড পাওয়া গেছে"
self.SAVING_PRESET = "প্রিসেট সংরক্ষণ করা হচ্ছে"
self.PRESET_SAVED_TO = "{0} এ প্রিসেট সংরক্ষিত"
self.LOADING_PRESET = "প্রিসেট লোড করা হচ্ছে"
self.PRESET_LOADED_FROM = "{0} থেকে প্রিসেট লোড করা হয়েছে"
self.ADDING_KV_OVERRIDE = "KV ওভাররাইড যুক্ত করা হচ্ছে: {0}"
self.SAVING_TASK_PRESET = "{0} এর জন্য টাস্ক প্রিসেট সংরক্ষণ করা হচ্ছে"
self.TASK_PRESET_SAVED = "টাস্ক প্রিসেট সংরক্ষিত"
self.TASK_PRESET_SAVED_TO = "{0} এ টাস্ক প্রিসেট সংরক্ষিত"
self.RESTARTING_TASK = "টাস্ক পুনরায় শুরু করা হচ্ছে: {0}"
self.IN_PROGRESS = "চলছে"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "ডাউনলোড সম্পন্ন। বের করা হয়েছে: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp বাইনারি ফাইল ডাউনলোড এবং {0} এ বের করা হয়েছে\nCUDA ফাইলগুলি {1} এ বের করা হয়েছে"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"এক্সট্র্যাকশনের জন্য কোন উপযুক্ত CUDA ব্যাকএন্ড পাওয়া যায়নি"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp বাইনারি ফাইল ডাউনলোড এবং {0} এ বের করা হয়েছে"
)
self.REFRESHING_LLAMACPP_RELEASES = "llama.cpp রিলিজগুলি রিফ্রেশ করা হচ্ছে"
self.UPDATING_ASSET_LIST = "অ্যাসেট তালিকা আপডেট করা হচ্ছে"
self.UPDATING_CUDA_OPTIONS = "CUDA অপশনগুলি আপডেট করা হচ্ছে"
self.STARTING_LLAMACPP_DOWNLOAD = "llama.cpp ডাউনলোড শুরু করা হচ্ছে"
self.UPDATING_CUDA_BACKENDS = "CUDA ব্যাকএন্ডগুলি আপডেট করা হচ্ছে"
self.NO_CUDA_BACKEND_SELECTED = (
"এক্সট্র্যাকশনের জন্য কোন CUDA ব্যাকএন্ড নির্বাচন করা হয়নি"
)
self.EXTRACTING_CUDA_FILES = "{0} থেকে {1} এ CUDA ফাইলগুলি বের করা হচ্ছে"
self.DOWNLOAD_ERROR = "ডাউনলোড ত্রুটি: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "টাস্ক কনটেক্সট মেনু দেখানো হচ্ছে"
self.SHOWING_PROPERTIES_FOR_TASK = "টাস্কের জন্য বৈশিষ্ট্য দেখানো হচ্ছে: {0}"
self.CANCELLING_TASK = "টাস্ক বাতিল করা হচ্ছে: {0}"
self.CANCELED = "বাতিল করা হয়েছে"
self.DELETING_TASK = "টাস্ক মুছে ফেলা হচ্ছে: {0}"
self.LOADING_MODELS = "মডেলগুলি লোড করা হচ্ছে"
self.LOADED_MODELS = "{0} টি মডেল লোড করা হয়েছে"
self.BROWSING_FOR_MODELS_DIRECTORY = "মডেল ডিরেক্টরি ব্রাউজ করা হচ্ছে"
self.SELECT_MODELS_DIRECTORY = "মডেল ডিরেক্টরি নির্বাচন করুন"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "আউটপুট ডিরেক্টরি ব্রাউজ করা হচ্ছে"
self.SELECT_OUTPUT_DIRECTORY = "আউটপুট ডিরেক্টরি নির্বাচন করুন"
self.BROWSING_FOR_LOGS_DIRECTORY = "লগ ডিরেক্টরি ব্রাউজ করা হচ্ছে"
self.SELECT_LOGS_DIRECTORY = "লগ ডিরেক্টরি নির্বাচন করুন"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix ফাইল ব্রাউজ করা হচ্ছে"
self.SELECT_IMATRIX_FILE = "IMatrix ফাইল নির্বাচন করুন"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU ব্যবহার: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "কোয়ান্টাইজেশন ইনপুট যাচাই করা হচ্ছে"
self.MODELS_PATH_REQUIRED = "মডেল পাথ প্রয়োজন"
self.OUTPUT_PATH_REQUIRED = "আউটপুট পাথ প্রয়োজন"
self.LOGS_PATH_REQUIRED = "লগ পাথ প্রয়োজন"
self.STARTING_MODEL_QUANTIZATION = "মডেল কোয়ান্টাইজেশন শুরু হচ্ছে"
self.INPUT_FILE_NOT_EXIST = "ইনপুট ফাইল '{0}' বিদ্যমান নেই।"
self.QUANTIZING_MODEL_TO = "{0} কে {1} এ কোয়ান্টাইজ করা হচ্ছে"
self.QUANTIZATION_TASK_STARTED = "{0} এর জন্য কোয়ান্টাইজেশন টাস্ক শুরু হয়েছে"
self.ERROR_STARTING_QUANTIZATION = "কোয়ান্টাইজেশন শুরু করতে ত্রুটি: {0}"
self.UPDATING_MODEL_INFO = "মডেল তথ্য আপডেট করা হচ্ছে: {0}"
self.TASK_FINISHED = "টাস্ক সম্পন্ন: {0}"
self.SHOWING_TASK_DETAILS_FOR = "এর জন্য টাস্কের বিবরণ দেখানো হচ্ছে: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrix ডেটা ফাইল ব্রাউজ করা হচ্ছে"
self.SELECT_DATA_FILE = "ডেটা ফাইল নির্বাচন করুন"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrix মডেল ফাইল ব্রাউজ করা হচ্ছে"
self.SELECT_MODEL_FILE = "মডেল ফাইল নির্বাচন করুন"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "IMatrix আউটপুট ফাইল ব্রাউজ করা হচ্ছে"
self.SELECT_OUTPUT_FILE = "আউটপুট ফাইল নির্বাচন করুন"
self.STARTING_IMATRIX_GENERATION = "IMatrix জেনারেশন শুরু হচ্ছে"
self.BACKEND_PATH_NOT_EXIST = "ব্যাকএন্ড পাথ বিদ্যমান নেই: {0}"
self.GENERATING_IMATRIX = "IMatrix তৈরি করা হচ্ছে"
self.ERROR_STARTING_IMATRIX_GENERATION = "IMatrix জেনারেশন শুরু করতে ত্রুটি: {0}"
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix জেনারেশন টাস্ক শুরু হয়েছে"
self.ERROR_MESSAGE = "ত্রুটি: {0}"
self.TASK_ERROR = "টাস্ক ত্রুটি: {0}"
self.APPLICATION_CLOSING = "অ্যাপ্লিকেশন বন্ধ করা হচ্ছে"
self.APPLICATION_CLOSED = "অ্যাপ্লিকেশন বন্ধ"
self.SELECT_QUANTIZATION_TYPE = "কোয়ান্টাইজেশন ধরণ নির্বাচন করুন"
self.ALLOWS_REQUANTIZING = "যে টেন্সরগুলি ইতিমধ্যে কোয়ান্টাইজ করা হয়েছে তাদের পুনরায় কোয়ান্টাইজ করার অনুমতি দেয়"
self.LEAVE_OUTPUT_WEIGHT = "output.weight কে (পুনরায়) কোয়ান্টাইজ না করে রেখে দেবে"
self.DISABLE_K_QUANT_MIXTURES = (
"k-কোয়ান্ট মিশ্রণগুলি অক্ষম করুন এবং সমস্ত টেন্সরকে একই ধরণের কোয়ান্টাইজ করুন"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"কোয়ান্ট অপ্টিমাইজেশনের জন্য ফাইলের ডেটা গুরুত্বপূর্ণ ম্যাট্রিক্স হিসাবে ব্যবহার করুন"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"এই টেন্সরগুলির জন্য গুরুত্বপূর্ণ ম্যাট্রিক্স ব্যবহার করুন"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"এই টেন্সরগুলির জন্য গুরুত্বপূর্ণ ম্যাট্রিক্স ব্যবহার করবেন না"
)
self.OUTPUT_TENSOR_TYPE = "আউটপুট টেন্সর ধরণ:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"output.weight টেন্সরের জন্য এই ধরণটি ব্যবহার করুন"
)
self.TOKEN_EMBEDDING_TYPE = "টোকেন এম্বেডিং ধরণ:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"টোকেন এম্বেডিং টেন্সরের জন্য এই ধরণটি ব্যবহার করুন"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"ইনপুটের মতো একই শার্ডে কোয়ান্টাইজ করা মডেল তৈরি করবে"
)
self.OVERRIDE_MODEL_METADATA = "মডেল মেটাডেটা ওভাররাইড করুন"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix জেনারেশনের জন্য ইনপুট ডেটা ফাইল"
self.MODEL_TO_BE_QUANTIZED = "কোয়ান্টাইজ করার জন্য মডেল"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "তৈরি করা IMatrix এর জন্য আউটপুট পাথ"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "IMatrix কতবার সংরক্ষণ করবেন"
self.SET_GPU_OFFLOAD_VALUE = "GPU অফলোড মান সেট করুন (-ngl)"
self.COMPLETED = "সম্পন্ন"
self.REFRESH_MODELS = "মডেল রিফ্রেশ করুন"
class _Polish(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Automatyczny kwantyzator modeli GGUF)"
self.RAM_USAGE = "Użycie pamięci RAM:"
self.CPU_USAGE = "Użycie procesora:"
self.BACKEND = "Backend Llama.cpp:"
self.REFRESH_BACKENDS = "Odśwież backendy"
self.MODELS_PATH = "Ścieżka modeli:"
self.OUTPUT_PATH = "Ścieżka wyjściowa:"
self.LOGS_PATH = "Ścieżka logów:"
self.BROWSE = "Przeglądaj"
self.AVAILABLE_MODELS = "Dostępne modele:"
self.QUANTIZATION_TYPE = "Typ kwantyzacji:"
self.ALLOW_REQUANTIZE = "Zezwól na ponowną kwantyzację"
self.LEAVE_OUTPUT_TENSOR = "Pozostaw tensor wyjściowy"
self.PURE = "Czysty"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Uwzględnij wagi:"
self.EXCLUDE_WEIGHTS = "Wyklucz wagi:"
self.USE_OUTPUT_TENSOR_TYPE = "Użyj typu tensora wyjściowego"
self.USE_TOKEN_EMBEDDING_TYPE = "Użyj typu osadzania tokenów"
self.KEEP_SPLIT = "Zachowaj podział"
self.KV_OVERRIDES = "Nadpisania KV:"
self.ADD_NEW_OVERRIDE = "Dodaj nowe nadpisanie"
self.QUANTIZE_MODEL = "Kwantyzuj model"
self.SAVE_PRESET = "Zapisz ustawienia predefiniowane"
self.LOAD_PRESET = "Wczytaj ustawienia predefiniowane"
self.TASKS = "Zadania:"
self.DOWNLOAD_LLAMACPP = "Pobierz llama.cpp"
self.SELECT_RELEASE = "Wybierz wersję:"
self.SELECT_ASSET = "Wybierz zasób:"
self.EXTRACT_CUDA_FILES = "Wyodrębnij pliki CUDA"
self.SELECT_CUDA_BACKEND = "Wybierz backend CUDA:"
self.DOWNLOAD = "Pobierz"
self.IMATRIX_GENERATION = "Generowanie IMatrix"
self.DATA_FILE = "Plik danych:"
self.MODEL = "Model:"
self.OUTPUT = "Wyjście:"
self.OUTPUT_FREQUENCY = "Częstotliwość wyjścia:"
self.GPU_OFFLOAD = "Odciążenie GPU:"
self.AUTO = "Automatyczny"
self.GENERATE_IMATRIX = "Generuj IMatrix"
self.ERROR = "Błąd"
self.WARNING = "Ostrzeżenie"
self.PROPERTIES = "Właściwości"
self.CANCEL = "Anuluj"
self.RESTART = "Uruchom ponownie"
self.DELETE = "Usuń"
self.CONFIRM_DELETION = "Czy na pewno chcesz usunąć to zadanie?"
self.TASK_RUNNING_WARNING = (
"Niektóre zadania są nadal uruchomione. Czy na pewno chcesz wyjść?"
)
self.YES = "Tak"
self.NO = "Nie"
self.DOWNLOAD_COMPLETE = "Pobieranie zakończone"
self.CUDA_EXTRACTION_FAILED = "Wyodrębnianie CUDA nie powiodło się"
self.PRESET_SAVED = "Ustawienia predefiniowane zapisane"
self.PRESET_LOADED = "Ustawienia predefiniowane wczytane"
self.NO_ASSET_SELECTED = "Nie wybrano zasobu"
self.DOWNLOAD_FAILED = "Pobieranie nie powiodło się"
self.NO_BACKEND_SELECTED = "Nie wybrano backendu"
self.NO_MODEL_SELECTED = "Nie wybrano modelu"
self.REFRESH_RELEASES = "Odśwież wersje"
self.NO_SUITABLE_CUDA_BACKENDS = "Nie znaleziono odpowiednich backendów CUDA"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Plik binarny llama.cpp został pobrany i wyodrębniony do {0}\nPliki CUDA wyodrębnione do {1}"
self.CUDA_FILES_EXTRACTED = "Pliki CUDA wyodrębnione do"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nie znaleziono odpowiedniego backendu CUDA do wyodrębnienia"
)
self.ERROR_FETCHING_RELEASES = "Błąd podczas pobierania wersji: {0}"
self.CONFIRM_DELETION_TITLE = "Potwierdź usunięcie"
self.LOG_FOR = "Dziennik dla {0}"
self.ALL_FILES = "Wszystkie pliki (*)"
self.GGUF_FILES = "Pliki GGUF (*.gguf)"
self.DAT_FILES = "Pliki DAT (*.dat)"
self.JSON_FILES = "Pliki JSON (*.json)"
self.FAILED_LOAD_PRESET = "Nie udało się wczytać ustawień predefiniowanych: {0}"
self.INITIALIZING_AUTOGGUF = "Inicjalizacja aplikacji AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Inicjalizacja AutoGGUF zakończona"
self.REFRESHING_BACKENDS = "Odświeżanie backendów"
self.NO_BACKENDS_AVAILABLE = "Brak dostępnych backendów"
self.FOUND_VALID_BACKENDS = "Znaleziono {0} prawidłowych backendów"
self.SAVING_PRESET = "Zapisywanie ustawień predefiniowanych"
self.PRESET_SAVED_TO = "Ustawienia predefiniowane zapisane do {0}"
self.LOADING_PRESET = "Wczytywanie ustawień predefiniowanych"
self.PRESET_LOADED_FROM = "Ustawienia predefiniowane wczytane z {0}"
self.ADDING_KV_OVERRIDE = "Dodawanie nadpisania KV: {0}"
self.SAVING_TASK_PRESET = (
"Zapisywanie ustawień predefiniowanych zadania dla {0}"
)
self.TASK_PRESET_SAVED = "Ustawienia predefiniowane zadania zapisane"
self.TASK_PRESET_SAVED_TO = "Ustawienia predefiniowane zadania zapisane do {0}"
self.RESTARTING_TASK = "Ponowne uruchamianie zadania: {0}"
self.IN_PROGRESS = "W trakcie"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"Pobieranie zakończone. Wyodrębniono do: {0}"
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Plik binarny llama.cpp został pobrany i wyodrębniony do {0}\nPliki CUDA wyodrębnione do {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nie znaleziono odpowiedniego backendu CUDA do wyodrębnienia"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Plik binarny llama.cpp został pobrany i wyodrębniony do {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Odświeżanie wersji llama.cpp"
self.UPDATING_ASSET_LIST = "Aktualizacja listy zasobów"
self.UPDATING_CUDA_OPTIONS = "Aktualizacja opcji CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Rozpoczynanie pobierania llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Aktualizacja backendów CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Nie wybrano backendu CUDA do wyodrębnienia"
self.EXTRACTING_CUDA_FILES = "Wyodrębnianie plików CUDA z {0} do {1}"
self.DOWNLOAD_ERROR = "Błąd pobierania: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Wyświetlanie menu kontekstowego zadania"
self.SHOWING_PROPERTIES_FOR_TASK = "Wyświetlanie właściwości zadania: {0}"
self.CANCELLING_TASK = "Anulowanie zadania: {0}"
self.CANCELED = "Anulowano"
self.DELETING_TASK = "Usuwanie zadania: {0}"
self.LOADING_MODELS = "Ładowanie modeli"
self.LOADED_MODELS = "Załadowano {0} modeli"
self.BROWSING_FOR_MODELS_DIRECTORY = "Przeglądanie katalogu modeli"
self.SELECT_MODELS_DIRECTORY = "Wybierz katalog modeli"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Przeglądanie katalogu wyjściowego"
self.SELECT_OUTPUT_DIRECTORY = "Wybierz katalog wyjściowy"
self.BROWSING_FOR_LOGS_DIRECTORY = "Przeglądanie katalogu logów"
self.SELECT_LOGS_DIRECTORY = "Wybierz katalog logów"
self.BROWSING_FOR_IMATRIX_FILE = "Przeglądanie pliku IMatrix"
self.SELECT_IMATRIX_FILE = "Wybierz plik IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Użycie procesora: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Walidacja danych wejściowych kwantyzacji"
self.MODELS_PATH_REQUIRED = "Ścieżka modeli jest wymagana"
self.OUTPUT_PATH_REQUIRED = "Ścieżka wyjściowa jest wymagana"
self.LOGS_PATH_REQUIRED = "Ścieżka logów jest wymagana"
self.STARTING_MODEL_QUANTIZATION = "Rozpoczynanie kwantyzacji modelu"
self.INPUT_FILE_NOT_EXIST = "Plik wejściowy '{0}' nie istnieje."
self.QUANTIZING_MODEL_TO = "Kwantyzacja {0} do {1}"
self.QUANTIZATION_TASK_STARTED = "Zadanie kwantyzacji uruchomione dla {0}"
self.ERROR_STARTING_QUANTIZATION = "Błąd podczas uruchamiania kwantyzacji: {0}"
self.UPDATING_MODEL_INFO = "Aktualizacja informacji o modelu: {0}"
self.TASK_FINISHED = "Zadanie zakończone: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Wyświetlanie szczegółów zadania dla: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Przeglądanie pliku danych IMatrix"
self.SELECT_DATA_FILE = "Wybierz plik danych"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Przeglądanie pliku modelu IMatrix"
self.SELECT_MODEL_FILE = "Wybierz plik modelu"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Przeglądanie pliku wyjściowego IMatrix"
self.SELECT_OUTPUT_FILE = "Wybierz plik wyjściowy"
self.STARTING_IMATRIX_GENERATION = "Rozpoczynanie generowania IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Ścieżka backendu nie istnieje: {0}"
self.GENERATING_IMATRIX = "Generowanie IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Błąd podczas uruchamiania generowania IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Zadanie generowania IMatrix uruchomione"
self.ERROR_MESSAGE = "Błąd: {0}"
self.TASK_ERROR = "Błąd zadania: {0}"
self.APPLICATION_CLOSING = "Zamykanie aplikacji"
self.APPLICATION_CLOSED = "Aplikacja zamknięta"
self.SELECT_QUANTIZATION_TYPE = "Wybierz typ kwantyzacji"
self.ALLOWS_REQUANTIZING = (
"Pozwala na ponowną kwantyzację tensorów, które zostały już skwantyzowane"
)
self.LEAVE_OUTPUT_WEIGHT = (
"Pozostawi output.weight nieskwantyzowany (lub nieskwantyzowany ponownie)"
)
self.DISABLE_K_QUANT_MIXTURES = (
"Wyłącz mieszanki k-kwant i kwantyzuj wszystkie tensory do tego samego typu"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"Użyj danych w pliku jako macierzy ważności dla optymalizacji kwantyzacji"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Użyj macierzy ważności dla tych tensorów"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Nie używaj macierzy ważności dla tych tensorów"
)
self.OUTPUT_TENSOR_TYPE = "Typ tensora wyjściowego:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Użyj tego typu dla tensora output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Typ osadzania tokenów:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Użyj tego typu dla tensora osadzania tokenów"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Wygeneruje skwantyzowany model w tych samych fragmentach co dane wejściowe"
)
self.OVERRIDE_MODEL_METADATA = "Zastąp metadane modelu"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Plik danych wejściowych do generowania IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Model do kwantyzacji"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Ścieżka wyjściowa dla wygenerowanego IMatrix"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Jak często zapisywać IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Ustaw wartość odciążenia GPU (-ngl)"
self.COMPLETED = "Ukończono"
self.REFRESH_MODELS = "Obnovit modely"
class _Romanian(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Cuantizator automat de modele GGUF)"
self.RAM_USAGE = "Utilizare RAM:"
self.CPU_USAGE = "Utilizare CPU:"
self.BACKEND = "Backend Llama.cpp:"
self.REFRESH_BACKENDS = "Reîmprospătați backends"
self.MODELS_PATH = "Cale modele:"
self.OUTPUT_PATH = "Cale ieșire:"
self.LOGS_PATH = "Cale jurnale:"
self.BROWSE = "Răsfoiți"
self.AVAILABLE_MODELS = "Modele disponibile:"
self.QUANTIZATION_TYPE = "Tipul de cuantizare:"
self.ALLOW_REQUANTIZE = "Permiteți recuantizarea"
self.LEAVE_OUTPUT_TENSOR = "Lăsați tensorul de ieșire"
self.PURE = "Pur"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Includeți ponderile:"
self.EXCLUDE_WEIGHTS = "Excludeți ponderile:"
self.USE_OUTPUT_TENSOR_TYPE = "Utilizați tipul tensorului de ieșire"
self.USE_TOKEN_EMBEDDING_TYPE = "Utilizați tipul de încorporare a tokenului"
self.KEEP_SPLIT = "Păstrați divizarea"
self.KV_OVERRIDES = "Suprascrieri KV:"
self.ADD_NEW_OVERRIDE = "Adăugați o nouă suprascriere"
self.QUANTIZE_MODEL = "Cuantizați modelul"
self.SAVE_PRESET = "Salvați presetarea"
self.LOAD_PRESET = "Încărcați presetarea"
self.TASKS = "Sarcini:"
self.DOWNLOAD_LLAMACPP = "Descărcați llama.cpp"
self.SELECT_RELEASE = "Selectați versiunea:"
self.SELECT_ASSET = "Selectați activul:"
self.EXTRACT_CUDA_FILES = "Extrageți fișierele CUDA"
self.SELECT_CUDA_BACKEND = "Selectați backend CUDA:"
self.DOWNLOAD = "Descărcați"
self.IMATRIX_GENERATION = "Generare IMatrix"
self.DATA_FILE = "Fișier de date:"
self.MODEL = "Model:"
self.OUTPUT = "Ieșire:"
self.OUTPUT_FREQUENCY = "Frecvența ieșirii:"
self.GPU_OFFLOAD = "Descărcare GPU:"
self.AUTO = "Automat"
self.GENERATE_IMATRIX = "Generați IMatrix"
self.ERROR = "Eroare"
self.WARNING = "Avertisment"
self.PROPERTIES = "Proprietăți"
self.CANCEL = "Anulați"
self.RESTART = "Reporniți"
self.DELETE = "Ștergeți"
self.CONFIRM_DELETION = "Sunteți sigur că doriți să ștergeți această sarcină?"
self.TASK_RUNNING_WARNING = "Unele sarcini sunt încă în curs de execuție. Sunteți sigur că doriți să ieșiți?"
self.YES = "Da"
self.NO = "Nu"
self.DOWNLOAD_COMPLETE = "Descărcare finalizată"
self.CUDA_EXTRACTION_FAILED = "Extragerea CUDA a eșuat"
self.PRESET_SAVED = "Presetare salvată"
self.PRESET_LOADED = "Presetare încărcată"
self.NO_ASSET_SELECTED = "Niciun activ selectat"
self.DOWNLOAD_FAILED = "Descărcarea a eșuat"
self.NO_BACKEND_SELECTED = "Niciun backend selectat"
self.NO_MODEL_SELECTED = "Niciun model selectat"
self.REFRESH_RELEASES = "Reîmprospătați versiunile"
self.NO_SUITABLE_CUDA_BACKENDS = "Nu s-au găsit backends CUDA potrivite"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Fișierul binar llama.cpp a fost descărcat și extras în {0}\nFișierele CUDA au fost extrase în {1}"
self.CUDA_FILES_EXTRACTED = "Fișierele CUDA au fost extrase în"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nu s-a găsit un backend CUDA potrivit pentru extragere"
)
self.ERROR_FETCHING_RELEASES = "Eroare la preluarea versiunilor: {0}"
self.CONFIRM_DELETION_TITLE = "Confirmați ștergerea"
self.LOG_FOR = "Jurnal pentru {0}"
self.ALL_FILES = "Toate fișierele (*)"
self.GGUF_FILES = "Fișiere GGUF (*.gguf)"
self.DAT_FILES = "Fișiere DAT (*.dat)"
self.JSON_FILES = "Fișiere JSON (*.json)"
self.FAILED_LOAD_PRESET = "Nu s-a putut încărca presetarea: {0}"
self.INITIALIZING_AUTOGGUF = "Inițializarea aplicației AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Inițializarea AutoGGUF finalizată"
self.REFRESHING_BACKENDS = "Reîmprospătarea backends"
self.NO_BACKENDS_AVAILABLE = "Nu există backends disponibile"
self.FOUND_VALID_BACKENDS = "S-au găsit {0} backends valide"
self.SAVING_PRESET = "Salvarea presetării"
self.PRESET_SAVED_TO = "Presetare salvată în {0}"
self.LOADING_PRESET = "Încărcarea presetării"
self.PRESET_LOADED_FROM = "Presetare încărcată din {0}"
self.ADDING_KV_OVERRIDE = "Adăugarea suprascrierii KV: {0}"
self.SAVING_TASK_PRESET = "Salvarea presetării sarcinii pentru {0}"
self.TASK_PRESET_SAVED = "Presetare sarcină salvată"
self.TASK_PRESET_SAVED_TO = "Presetare sarcină salvată în {0}"
self.RESTARTING_TASK = "Repornirea sarcinii: {0}"
self.IN_PROGRESS = "În curs"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Descărcare finalizată. Extras în: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Fișierul binar llama.cpp a fost descărcat și extras în {0}\nFișierele CUDA au fost extrase în {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nu s-a găsit un backend CUDA potrivit pentru extragere"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Fișierul binar llama.cpp a fost descărcat și extras în {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Reîmprospătarea versiunilor llama.cpp"
self.UPDATING_ASSET_LIST = "Actualizarea listei de active"
self.UPDATING_CUDA_OPTIONS = "Actualizarea opțiunilor CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Începerea descărcării llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Actualizarea backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Niciun backend CUDA selectat pentru extragere"
self.EXTRACTING_CUDA_FILES = "Extragerea fișierelor CUDA din {0} în {1}"
self.DOWNLOAD_ERROR = "Eroare de descărcare: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Afișarea meniului contextual al sarcinii"
self.SHOWING_PROPERTIES_FOR_TASK = "Afișarea proprietăților pentru sarcina: {0}"
self.CANCELLING_TASK = "Anularea sarcinii: {0}"
self.CANCELED = "Anulat"
self.DELETING_TASK = "Ștergerea sarcinii: {0}"
self.LOADING_MODELS = "Încărcarea modelelor"
self.LOADED_MODELS = "{0} modele încărcate"
self.BROWSING_FOR_MODELS_DIRECTORY = "Răsfoirea directorului de modele"
self.SELECT_MODELS_DIRECTORY = "Selectați directorul de modele"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Răsfoirea directorului de ieșire"
self.SELECT_OUTPUT_DIRECTORY = "Selectați directorul de ieșire"
self.BROWSING_FOR_LOGS_DIRECTORY = "Răsfoirea directorului de jurnale"
self.SELECT_LOGS_DIRECTORY = "Selectați directorul de jurnale"
self.BROWSING_FOR_IMATRIX_FILE = "Răsfoirea fișierului IMatrix"
self.SELECT_IMATRIX_FILE = "Selectați fișierul IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Utilizare CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validarea intrărilor de cuantizare"
self.MODELS_PATH_REQUIRED = "Calea modelelor este obligatorie"
self.OUTPUT_PATH_REQUIRED = "Calea ieșirii este obligatorie"
self.LOGS_PATH_REQUIRED = "Calea jurnalelor este obligatorie"
self.STARTING_MODEL_QUANTIZATION = "Pornirea cuantizării modelului"
self.INPUT_FILE_NOT_EXIST = "Fișierul de intrare '{0}' nu există."
self.QUANTIZING_MODEL_TO = "Cuantizarea {0} la {1}"
self.QUANTIZATION_TASK_STARTED = (
"Sarcina de cuantizare a fost pornită pentru {0}"
)
self.ERROR_STARTING_QUANTIZATION = "Eroare la pornirea cuantizării: {0}"
self.UPDATING_MODEL_INFO = "Actualizarea informațiilor despre model: {0}"
self.TASK_FINISHED = "Sarcină finalizată: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Afișarea detaliilor sarcinii pentru: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Răsfoirea fișierului de date IMatrix"
self.SELECT_DATA_FILE = "Selectați fișierul de date"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Răsfoirea fișierului de model IMatrix"
self.SELECT_MODEL_FILE = "Selectați fișierul model"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Răsfoirea fișierului de ieșire IMatrix"
self.SELECT_OUTPUT_FILE = "Selectați fișierul de ieșire"
self.STARTING_IMATRIX_GENERATION = "Pornirea generării IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Calea backendului nu există: {0}"
self.GENERATING_IMATRIX = "Generarea IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Eroare la pornirea generării IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = (
"Sarcina de generare IMatrix a fost pornită"
)
self.ERROR_MESSAGE = "Eroare: {0}"
self.TASK_ERROR = "Eroare de sarcină: {0}"
self.APPLICATION_CLOSING = "Închiderea aplicației"
self.APPLICATION_CLOSED = "Aplicație închisă"
self.SELECT_QUANTIZATION_TYPE = "Selectați tipul de cuantizare"
self.ALLOWS_REQUANTIZING = (
"Permite recuantizarea tensorilor care au fost deja cuantizați"
)
self.LEAVE_OUTPUT_WEIGHT = "Va lăsa output.weight necuantizat (sau recuantizat)"
self.DISABLE_K_QUANT_MIXTURES = (
"Dezactivați mixurile k-quant și cuantizați toți tensorii la același tip"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Utilizați datele din fișier ca matrice de importanță pentru optimizările de cuantizare"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Utilizați matricea de importanță pentru acești tensori"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Nu utilizați matricea de importanță pentru acești tensori"
)
self.OUTPUT_TENSOR_TYPE = "Tipul tensorului de ieșire:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Utilizați acest tip pentru tensorul output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Tipul de încorporare a tokenului:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Utilizați acest tip pentru tensorul de încorporări ale tokenului"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Va genera modelul cuantizat în aceleași fragmente ca și intrarea"
)
self.OVERRIDE_MODEL_METADATA = "Suprascrieți metadatele modelului"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Fișier de date de intrare pentru generarea IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modelul de cuantizat"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Calea de ieșire pentru IMatrix generat"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Cât de des să salvați IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Setați valoarea de descărcare GPU (-ngl)"
self.COMPLETED = "Finalizat"
self.REFRESH_MODELS = "Odśwież modele"
class _Czech(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Automatický kvantizátor modelů GGUF)"
self.RAM_USAGE = "Využití RAM:"
self.CPU_USAGE = "Využití CPU:"
self.BACKEND = "Backend Llama.cpp:"
self.REFRESH_BACKENDS = "Obnovit backendy"
self.MODELS_PATH = "Cesta k modelům:"
self.OUTPUT_PATH = "Výstupní cesta:"
self.LOGS_PATH = "Cesta k logům:"
self.BROWSE = "Procházet"
self.AVAILABLE_MODELS = "Dostupné modely:"
self.QUANTIZATION_TYPE = "Typ kvantizace:"
self.ALLOW_REQUANTIZE = "Povolit rekvantizaci"
self.LEAVE_OUTPUT_TENSOR = "Ponechat výstupní tenzor"
self.PURE = "Čistý"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Zahrnout váhy:"
self.EXCLUDE_WEIGHTS = "Vyloučit váhy:"
self.USE_OUTPUT_TENSOR_TYPE = "Použít typ výstupního tenzoru"
self.USE_TOKEN_EMBEDDING_TYPE = "Použít typ vkládání tokenů"
self.KEEP_SPLIT = "Zachovat rozdělení"
self.KV_OVERRIDES = "Přepsání KV:"
self.ADD_NEW_OVERRIDE = "Přidat nové přepsání"
self.QUANTIZE_MODEL = "Kvantizovat model"
self.SAVE_PRESET = "Uložit předvolbu"
self.LOAD_PRESET = "Načíst předvolbu"
self.TASKS = "Úkoly:"
self.DOWNLOAD_LLAMACPP = "Stáhnout llama.cpp"
self.SELECT_RELEASE = "Vybrat verzi:"
self.SELECT_ASSET = "Vybrat aktivum:"
self.EXTRACT_CUDA_FILES = "Extrahovat soubory CUDA"
self.SELECT_CUDA_BACKEND = "Vybrat backend CUDA:"
self.DOWNLOAD = "Stáhnout"
self.IMATRIX_GENERATION = "Generování IMatrix"
self.DATA_FILE = "Datový soubor:"
self.MODEL = "Model:"
self.OUTPUT = "Výstup:"
self.OUTPUT_FREQUENCY = "Frekvence výstupu:"
self.GPU_OFFLOAD = "Odlehčení GPU:"
self.AUTO = "Automaticky"
self.GENERATE_IMATRIX = "Generovat IMatrix"
self.ERROR = "Chyba"
self.WARNING = "Varování"
self.PROPERTIES = "Vlastnosti"
self.CANCEL = "Zrušit"
self.RESTART = "Restartovat"
self.DELETE = "Smazat"
self.CONFIRM_DELETION = "Jste si jisti, že chcete smazat tento úkol?"
self.TASK_RUNNING_WARNING = (
"Některé úkoly stále běží. Jste si jisti, že chcete ukončit?"
)
self.YES = "Ano"
self.NO = "Ne"
self.DOWNLOAD_COMPLETE = "Stahování dokončeno"
self.CUDA_EXTRACTION_FAILED = "Extrahování CUDA se nezdařilo"
self.PRESET_SAVED = "Předvolba uložena"
self.PRESET_LOADED = "Předvolba načtena"
self.NO_ASSET_SELECTED = "Nebylo vybráno žádné aktivum"
self.DOWNLOAD_FAILED = "Stahování se nezdařilo"
self.NO_BACKEND_SELECTED = "Nebyl vybrán žádný backend"
self.NO_MODEL_SELECTED = "Nebyl vybrán žádný model"
self.REFRESH_RELEASES = "Obnovit verze"
self.NO_SUITABLE_CUDA_BACKENDS = "Nebyly nalezeny žádné vhodné backendy CUDA"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Binární soubor llama.cpp byl stažen a extrahován do {0}\nSoubory CUDA extrahovány do {1}"
self.CUDA_FILES_EXTRACTED = "Soubory CUDA extrahovány do"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nebyl nalezen žádný vhodný backend CUDA pro extrakci"
)
self.ERROR_FETCHING_RELEASES = "Chyba při načítání verzí: {0}"
self.CONFIRM_DELETION_TITLE = "Potvrdit smazání"
self.LOG_FOR = "Log pro {0}"
self.ALL_FILES = "Všechny soubory (*)"
self.GGUF_FILES = "Soubory GGUF (*.gguf)"
self.DAT_FILES = "Soubory DAT (*.dat)"
self.JSON_FILES = "Soubory JSON (*.json)"
self.FAILED_LOAD_PRESET = "Nepodařilo se načíst předvolbu: {0}"
self.INITIALIZING_AUTOGGUF = "Inicializace aplikace AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Inicializace AutoGGUF dokončena"
self.REFRESHING_BACKENDS = "Obnovování backendů"
self.NO_BACKENDS_AVAILABLE = "Žádné dostupné backendy"
self.FOUND_VALID_BACKENDS = "Nalezeno {0} platných backendů"
self.SAVING_PRESET = "Ukládání předvolby"
self.PRESET_SAVED_TO = "Předvolba uložena do {0}"
self.LOADING_PRESET = "Načítání předvolby"
self.PRESET_LOADED_FROM = "Předvolba načtena z {0}"
self.ADDING_KV_OVERRIDE = "Přidávání přepsání KV: {0}"
self.SAVING_TASK_PRESET = "Ukládání předvolby úkolu pro {0}"
self.TASK_PRESET_SAVED = "Předvolba úkolu uložena"
self.TASK_PRESET_SAVED_TO = "Předvolba úkolu uložena do {0}"
self.RESTARTING_TASK = "Restartování úkolu: {0}"
self.IN_PROGRESS = "Probíhá"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Stahování dokončeno. Extrahováno do: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Binární soubor llama.cpp byl stažen a extrahován do {0}\nSoubory CUDA extrahovány do {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nebyl nalezen žádný vhodný backend CUDA pro extrakci"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Binární soubor llama.cpp byl stažen a extrahován do {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Obnovování verzí llama.cpp"
self.UPDATING_ASSET_LIST = "Aktualizace seznamu aktiv"
self.UPDATING_CUDA_OPTIONS = "Aktualizace možností CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Zahájení stahování llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Aktualizace backendů CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Nebyl vybrán žádný backend CUDA pro extrakci"
self.EXTRACTING_CUDA_FILES = "Extrahování souborů CUDA z {0} do {1}"
self.DOWNLOAD_ERROR = "Chyba stahování: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Zobrazení kontextové nabídky úkolu"
self.SHOWING_PROPERTIES_FOR_TASK = "Zobrazení vlastností úkolu: {0}"
self.CANCELLING_TASK = "Zrušení úkolu: {0}"
self.CANCELED = "Zrušeno"
self.DELETING_TASK = "Mazání úkolu: {0}"
self.LOADING_MODELS = "Načítání modelů"
self.LOADED_MODELS = "Načteno {0} modelů"
self.BROWSING_FOR_MODELS_DIRECTORY = "Procházení adresáře modelů"
self.SELECT_MODELS_DIRECTORY = "Vyberte adresář modelů"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Procházení výstupního adresáře"
self.SELECT_OUTPUT_DIRECTORY = "Vyberte výstupní adresář"
self.BROWSING_FOR_LOGS_DIRECTORY = "Procházení adresáře logů"
self.SELECT_LOGS_DIRECTORY = "Vyberte adresář logů"
self.BROWSING_FOR_IMATRIX_FILE = "Procházení souboru IMatrix"
self.SELECT_IMATRIX_FILE = "Vyberte soubor IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Využití CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Ověřování vstupů kvantizace"
self.MODELS_PATH_REQUIRED = "Cesta k modelům je vyžadována"
self.OUTPUT_PATH_REQUIRED = "Výstupní cesta je vyžadována"
self.LOGS_PATH_REQUIRED = "Cesta k logům je vyžadována"
self.STARTING_MODEL_QUANTIZATION = "Spuštění kvantizace modelu"
self.INPUT_FILE_NOT_EXIST = "Vstupní soubor '{0}' neexistuje."
self.QUANTIZING_MODEL_TO = "Kvantizace {0} na {1}"
self.QUANTIZATION_TASK_STARTED = "Úkol kvantizace spuštěn pro {0}"
self.ERROR_STARTING_QUANTIZATION = "Chyba při spuštění kvantizace: {0}"
self.UPDATING_MODEL_INFO = "Aktualizace informací o modelu: {0}"
self.TASK_FINISHED = "Úkol dokončen: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Zobrazení detailů úkolu pro: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Procházení datového souboru IMatrix"
self.SELECT_DATA_FILE = "Vyberte datový soubor"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Procházení souboru modelu IMatrix"
self.SELECT_MODEL_FILE = "Vyberte soubor modelu"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Procházení výstupního souboru IMatrix"
self.SELECT_OUTPUT_FILE = "Vyberte výstupní soubor"
self.STARTING_IMATRIX_GENERATION = "Spuštění generování IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Cesta backendu neexistuje: {0}"
self.GENERATING_IMATRIX = "Generování IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Chyba při spuštění generování IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Úkol generování IMatrix spuštěn"
self.ERROR_MESSAGE = "Chyba: {0}"
self.TASK_ERROR = "Chyba úkolu: {0}"
self.APPLICATION_CLOSING = "Zavírání aplikace"
self.APPLICATION_CLOSED = "Aplikace zavřena"
self.SELECT_QUANTIZATION_TYPE = "Vyberte typ kvantizace"
self.ALLOWS_REQUANTIZING = (
"Umožňuje rekvantizovat tenzory, které již byly kvantizovány"
)
self.LEAVE_OUTPUT_WEIGHT = (
"Ponechá output.weight nekvantizovaný (nebo rekvantizovaný)"
)
self.DISABLE_K_QUANT_MIXTURES = (
"Zakázat k-kvantové směsi a kvantizovat všechny tenzory na stejný typ"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"Použít data v souboru jako matici důležitosti pro optimalizace kvantizace"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Použít matici důležitosti pro tyto tenzory"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Nepoužívat matici důležitosti pro tyto tenzory"
)
self.OUTPUT_TENSOR_TYPE = "Typ výstupního tenzoru:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Použít tento typ pro tenzor output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Typ vkládání tokenů:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Použít tento typ pro tenzor vkládání tokenů"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Vygeneruje kvantizovaný model ve stejných fragmentech jako vstup"
)
self.OVERRIDE_MODEL_METADATA = "Přepsat metadata modelu"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Vstupní datový soubor pro generování IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Model, který má být kvantizován"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Výstupní cesta pro generovaný IMatrix"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Jak často ukládat IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Nastavit hodnotu odlehčení GPU (-ngl)"
self.COMPLETED = "Dokončeno"
self.REFRESH_MODELS = "Reîmprospătează modelele"
class _CanadianFrench(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Quantificateur automatique de modèles GGUF)"
self.RAM_USAGE = "Utilisation de la RAM :" # Spacing
self.CPU_USAGE = "Utilisation du CPU :" # Spacing
self.BACKEND = "Moteur d'arrière-plan Llama.cpp :" # Spacing and terminology
self.REFRESH_BACKENDS = "Actualiser les moteurs d'arrière-plan"
self.MODELS_PATH = "Chemin des modèles :" # Spacing
self.OUTPUT_PATH = "Chemin de sortie :" # Spacing
self.LOGS_PATH = "Chemin des journaux :" # Spacing
self.BROWSE = "Parcourir"
self.AVAILABLE_MODELS = "Modèles disponibles :" # Spacing
self.QUANTIZATION_TYPE = "Type de quantification :" # Spacing
self.ALLOW_REQUANTIZE = "Autoriser la requantification"
self.LEAVE_OUTPUT_TENSOR = "Laisser le tenseur de sortie"
self.PURE = "Pur"
self.IMATRIX = "IMatrix :" # Spacing
self.INCLUDE_WEIGHTS = "Inclure les poids :" # Spacing
self.EXCLUDE_WEIGHTS = "Exclure les poids :" # Spacing
self.USE_OUTPUT_TENSOR_TYPE = "Utiliser le type de tenseur de sortie"
self.USE_TOKEN_EMBEDDING_TYPE = "Utiliser le type d'intégration de jeton"
self.KEEP_SPLIT = "Conserver la division"
self.KV_OVERRIDES = "Remplacements KV :" # Spacing
self.ADD_NEW_OVERRIDE = "Ajouter un nouveau remplacement"
self.QUANTIZE_MODEL = "Quantifier le modèle"
self.SAVE_PRESET = "Enregistrer le préréglage"
self.LOAD_PRESET = "Charger le préréglage"
self.TASKS = "Tâches :" # Spacing
self.DOWNLOAD_LLAMACPP = "Télécharger llama.cpp"
self.SELECT_RELEASE = "Sélectionner la version :" # Spacing
self.SELECT_ASSET = "Sélectionner l'actif :" # Spacing
self.EXTRACT_CUDA_FILES = "Extraire les fichiers CUDA"
self.SELECT_CUDA_BACKEND = "Sélectionner le backend CUDA :" # Spacing
self.DOWNLOAD = "Télécharger"
self.IMATRIX_GENERATION = "Génération d'IMatrix"
self.DATA_FILE = "Fichier de données :" # Spacing
self.MODEL = "Modèle :" # Spacing
self.OUTPUT = "Sortie :" # Spacing
self.OUTPUT_FREQUENCY = "Fréquence de sortie :" # Spacing
self.GPU_OFFLOAD = "Déchargement GPU :" # Spacing
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Générer IMatrix"
self.ERROR = "Erreur"
self.WARNING = "Avertissement"
self.PROPERTIES = "Propriétés"
self.CANCEL = "Annuler"
self.RESTART = "Redémarrer"
self.DELETE = "Supprimer"
self.CONFIRM_DELETION = (
"Êtes-vous sûr de vouloir supprimer cette tâche ?" # Spacing
)
self.TASK_RUNNING_WARNING = "Certaines tâches sont encore en cours d'exécution. Êtes-vous sûr de vouloir quitter ?" # Spacing
self.YES = "Oui"
self.NO = "Non"
self.DOWNLOAD_COMPLETE = "Téléchargement terminé"
self.CUDA_EXTRACTION_FAILED = "Échec de l'extraction CUDA"
self.PRESET_SAVED = "Préréglage enregistré"
self.PRESET_LOADED = "Préréglage chargé"
self.NO_ASSET_SELECTED = "Aucun actif sélectionné"
self.DOWNLOAD_FAILED = "Échec du téléchargement"
self.NO_BACKEND_SELECTED = "Aucun backend sélectionné"
self.NO_MODEL_SELECTED = "Aucun modèle sélectionné"
self.REFRESH_RELEASES = "Actualiser les versions"
self.NO_SUITABLE_CUDA_BACKENDS = "Aucun backend CUDA approprié trouvé"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Le fichier binaire llama.cpp a été téléchargé et extrait dans {0}\nLes fichiers CUDA ont été extraits dans {1}"
self.CUDA_FILES_EXTRACTED = "Les fichiers CUDA ont été extraits dans"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Aucun backend CUDA approprié trouvé pour l'extraction"
)
self.ERROR_FETCHING_RELEASES = (
"Erreur lors de la récupération des versions : {0}" # Spacing
)
self.CONFIRM_DELETION_TITLE = "Confirmer la suppression"
self.LOG_FOR = "Journal pour {0}"
self.ALL_FILES = "Tous les fichiers (*)"
self.GGUF_FILES = "Fichiers GGUF (*.gguf)"
self.DAT_FILES = "Fichiers DAT (*.dat)"
self.JSON_FILES = "Fichiers JSON (*.json)"
self.FAILED_LOAD_PRESET = "Échec du chargement du préréglage : {0}" # Spacing
self.INITIALIZING_AUTOGGUF = "Initialisation de l'application AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Initialisation d'AutoGGUF terminée"
self.REFRESHING_BACKENDS = "Actualisation des moteurs d'arrière-plan"
self.NO_BACKENDS_AVAILABLE = "Aucun moteur d'arrière-plan disponible"
self.FOUND_VALID_BACKENDS = "{0} moteurs d'arrière-plan valides trouvés"
self.SAVING_PRESET = "Enregistrement du préréglage"
self.PRESET_SAVED_TO = "Préréglage enregistré dans {0}"
self.LOADING_PRESET = "Chargement du préréglage"
self.PRESET_LOADED_FROM = "Préréglage chargé depuis {0}"
self.ADDING_KV_OVERRIDE = "Ajout de remplacement KV : {0}" # Spacing
self.SAVING_TASK_PRESET = "Enregistrement du préréglage de tâche pour {0}"
self.TASK_PRESET_SAVED = "Préréglage de tâche enregistré"
self.TASK_PRESET_SAVED_TO = "Préréglage de tâche enregistré dans {0}"
self.RESTARTING_TASK = "Redémarrage de la tâche : {0}" # Spacing
self.IN_PROGRESS = "En cours"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"Téléchargement terminé. Extrait dans : {0}" # Spacing
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Le fichier binaire llama.cpp a été téléchargé et extrait dans {0}\nLes fichiers CUDA ont été extraits dans {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Aucun backend CUDA approprié trouvé pour l'extraction"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Le fichier binaire llama.cpp a été téléchargé et extrait dans {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Actualisation des versions de llama.cpp"
self.UPDATING_ASSET_LIST = "Mise à jour de la liste des actifs"
self.UPDATING_CUDA_OPTIONS = "Mise à jour des options CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Démarrage du téléchargement de llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Mise à jour des backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = (
"Aucun backend CUDA sélectionné pour l'extraction"
)
self.EXTRACTING_CUDA_FILES = "Extraction des fichiers CUDA de {0} à {1}"
self.DOWNLOAD_ERROR = "Erreur de téléchargement : {0}" # Spacing
self.SHOWING_TASK_CONTEXT_MENU = "Affichage du menu contextuel de la tâche"
self.SHOWING_PROPERTIES_FOR_TASK = (
"Affichage des propriétés de la tâche : {0}" # Spacing
)
self.CANCELLING_TASK = "Annulation de la tâche : {0}" # Spacing
self.CANCELED = "Annulée"
self.DELETING_TASK = "Suppression de la tâche : {0}" # Spacing
self.LOADING_MODELS = "Chargement des modèles"
self.LOADED_MODELS = "{0} modèles chargés"
self.BROWSING_FOR_MODELS_DIRECTORY = "Navigation dans le répertoire des modèles"
self.SELECT_MODELS_DIRECTORY = "Sélectionner le répertoire des modèles"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Navigation dans le répertoire de sortie"
self.SELECT_OUTPUT_DIRECTORY = "Sélectionner le répertoire de sortie"
self.BROWSING_FOR_LOGS_DIRECTORY = "Navigation dans le répertoire des journaux"
self.SELECT_LOGS_DIRECTORY = "Sélectionner le répertoire des journaux"
self.BROWSING_FOR_IMATRIX_FILE = "Navigation dans le fichier IMatrix"
self.SELECT_IMATRIX_FILE = "Sélectionner le fichier IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} Mo / {2} Mo)"
self.CPU_USAGE_FORMAT = "Utilisation du CPU : {0:.1f}%" # Spacing
self.VALIDATING_QUANTIZATION_INPUTS = "Validation des entrées de quantification"
self.MODELS_PATH_REQUIRED = "Le chemin des modèles est requis"
self.OUTPUT_PATH_REQUIRED = "Le chemin de sortie est requis"
self.LOGS_PATH_REQUIRED = "Le chemin des journaux est requis"
self.STARTING_MODEL_QUANTIZATION = "Démarrage de la quantification du modèle"
self.INPUT_FILE_NOT_EXIST = "Le fichier d'entrée '{0}' n'existe pas."
self.QUANTIZING_MODEL_TO = "Quantification de {0} en {1}"
self.QUANTIZATION_TASK_STARTED = "Tâche de quantification démarrée pour {0}"
self.ERROR_STARTING_QUANTIZATION = (
"Erreur lors du démarrage de la quantification : {0}" # Spacing
)
self.UPDATING_MODEL_INFO = (
"Mise à jour des informations sur le modèle : {0}" # Spacing
)
self.TASK_FINISHED = "Tâche terminée : {0}" # Spacing
self.SHOWING_TASK_DETAILS_FOR = (
"Affichage des détails de la tâche pour : {0}" # Spacing
)
self.BROWSING_FOR_IMATRIX_DATA_FILE = (
"Navigation dans le fichier de données IMatrix"
)
self.SELECT_DATA_FILE = "Sélectionner le fichier de données"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = (
"Navigation dans le fichier de modèle IMatrix"
)
self.SELECT_MODEL_FILE = "Sélectionner le fichier de modèle"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = (
"Navigation dans le fichier de sortie IMatrix"
)
self.SELECT_OUTPUT_FILE = "Sélectionner le fichier de sortie"
self.STARTING_IMATRIX_GENERATION = "Démarrage de la génération d'IMatrix"
self.BACKEND_PATH_NOT_EXIST = (
"Le chemin du backend n'existe pas : {0}" # Spacing
)
self.GENERATING_IMATRIX = "Génération d'IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Erreur lors du démarrage de la génération d'IMatrix : {0}" # Spacing
)
self.IMATRIX_GENERATION_TASK_STARTED = "Tâche de génération d'IMatrix démarrée"
self.ERROR_MESSAGE = "Erreur : {0}" # Spacing
self.TASK_ERROR = "Erreur de tâche : {0}" # Spacing
self.APPLICATION_CLOSING = "Fermeture de l'application"
self.APPLICATION_CLOSED = "Application fermée"
self.SELECT_QUANTIZATION_TYPE = "Sélectionnez le type de quantification"
self.ALLOWS_REQUANTIZING = (
"Permet de requantifier les tenseurs qui ont déjà été quantifiés"
)
self.LEAVE_OUTPUT_WEIGHT = "Laissera output.weight non (re)quantifié"
self.DISABLE_K_QUANT_MIXTURES = "Désactiver les mélanges k-quant et quantifier tous les tenseurs du même type"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Utiliser les données du fichier comme matrice d'importance pour les optimisations de quant"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Utiliser la matrice d'importance pour ces tenseurs"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Ne pas utiliser la matrice d'importance pour ces tenseurs"
)
self.OUTPUT_TENSOR_TYPE = "Type de tenseur de sortie :" # Spacing
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Utiliser ce type pour le tenseur output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Type d'intégration de jeton :" # Spacing
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Utiliser ce type pour le tenseur d'intégration de jetons"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Générera le modèle quantifié dans les mêmes fragments que l'entrée"
)
self.OVERRIDE_MODEL_METADATA = "Remplacer les métadonnées du modèle"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Fichier de données d'entrée pour la génération d'IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modèle à quantifier"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Chemin de sortie pour l'IMatrix généré"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Fréquence d'enregistrement de l'IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Définir la valeur de déchargement GPU (-ngl)"
self.COMPLETED = "Terminé"
self.REFRESH_MODELS = "Rafraîchir les modèles"
class _Portuguese_PT(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Quantificador Automático de Modelos GGUF)"
self.RAM_USAGE = "Utilização de RAM:"
self.CPU_USAGE = "Utilização da CPU:"
self.BACKEND = "Backend Llama.cpp:"
self.REFRESH_BACKENDS = "Atualizar Backends"
self.MODELS_PATH = "Caminho dos Modelos:"
self.OUTPUT_PATH = "Caminho de Saída:"
self.LOGS_PATH = "Caminho dos Logs:"
self.BROWSE = "Navegar"
self.AVAILABLE_MODELS = "Modelos Disponíveis:"
self.QUANTIZATION_TYPE = "Tipo de Quantização:"
self.ALLOW_REQUANTIZE = "Permitir Requantização"
self.LEAVE_OUTPUT_TENSOR = "Manter Tensor de Saída"
self.PURE = "Puro"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Incluir Pesos:"
self.EXCLUDE_WEIGHTS = "Excluir Pesos:"
self.USE_OUTPUT_TENSOR_TYPE = "Usar Tipo de Tensor de Saída"
self.USE_TOKEN_EMBEDDING_TYPE = "Usar Tipo de Incorporação de Token"
self.KEEP_SPLIT = "Manter Divisão"
self.KV_OVERRIDES = "Substituições KV:"
self.ADD_NEW_OVERRIDE = "Adicionar Nova Substituição"
self.QUANTIZE_MODEL = "Quantizar Modelo"
self.SAVE_PRESET = "Guardar Predefinição"
self.LOAD_PRESET = "Carregar Predefinição"
self.TASKS = "Tarefas:"
self.DOWNLOAD_LLAMACPP = "Descarregar llama.cpp"
self.SELECT_RELEASE = "Selecionar Versão:"
self.SELECT_ASSET = "Selecionar Ativo:"
self.EXTRACT_CUDA_FILES = "Extrair Ficheiros CUDA"
self.SELECT_CUDA_BACKEND = "Selecionar Backend CUDA:"
self.DOWNLOAD = "Descarregar"
self.IMATRIX_GENERATION = "Geração de IMatrix"
self.DATA_FILE = "Ficheiro de Dados:"
self.MODEL = "Modelo:"
self.OUTPUT = "Saída:"
self.OUTPUT_FREQUENCY = "Frequência de Saída:"
self.GPU_OFFLOAD = "Offload da GPU:"
self.AUTO = "Automático"
self.GENERATE_IMATRIX = "Gerar IMatrix"
self.ERROR = "Erro"
self.WARNING = "Aviso"
self.PROPERTIES = "Propriedades"
self.CANCEL = "Cancelar"
self.RESTART = "Reiniciar"
self.DELETE = "Eliminar"
self.CONFIRM_DELETION = "Tem a certeza de que pretende eliminar esta tarefa?"
self.TASK_RUNNING_WARNING = "Algumas tarefas ainda estão em execução. Tem a certeza de que pretende sair?"
self.YES = "Sim"
self.NO = "Não"
self.DOWNLOAD_COMPLETE = "Transferência Concluída"
self.CUDA_EXTRACTION_FAILED = "Falha na Extração do CUDA"
self.PRESET_SAVED = "Predefinição Guardada"
self.PRESET_LOADED = "Predefinição Carregada"
self.NO_ASSET_SELECTED = "Nenhum ativo selecionado"
self.DOWNLOAD_FAILED = "Falha na transferência"
self.NO_BACKEND_SELECTED = "Nenhum backend selecionado"
self.NO_MODEL_SELECTED = "Nenhum modelo selecionado"
self.REFRESH_RELEASES = "Atualizar Versões"
self.NO_SUITABLE_CUDA_BACKENDS = "Nenhum backend CUDA adequado encontrado"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Binário llama.cpp transferido e extraído para {0}\nFicheiros CUDA extraídos para {1}"
self.CUDA_FILES_EXTRACTED = "Ficheiros CUDA extraídos para"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nenhum backend CUDA adequado encontrado para extração"
)
self.ERROR_FETCHING_RELEASES = "Erro ao obter versões: {0}"
self.CONFIRM_DELETION_TITLE = "Confirmar Eliminação"
self.LOG_FOR = "Log para {0}"
self.ALL_FILES = "Todos os Ficheiros (*)"
self.GGUF_FILES = "Ficheiros GGUF (*.gguf)"
self.DAT_FILES = "Ficheiros DAT (*.dat)"
self.JSON_FILES = "Ficheiros JSON (*.json)"
self.FAILED_LOAD_PRESET = "Falha ao carregar a predefinição: {0}"
self.INITIALIZING_AUTOGGUF = "A inicializar a aplicação AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Inicialização do AutoGGUF concluída"
self.REFRESHING_BACKENDS = "A atualizar backends"
self.NO_BACKENDS_AVAILABLE = "Nenhum backend disponível"
self.FOUND_VALID_BACKENDS = "{0} backends válidos encontrados"
self.SAVING_PRESET = "A guardar predefinição"
self.PRESET_SAVED_TO = "Predefinição guardada em {0}"
self.LOADING_PRESET = "A carregar predefinição"
self.PRESET_LOADED_FROM = "Predefinição carregada de {0}"
self.ADDING_KV_OVERRIDE = "A adicionar substituição KV: {0}"
self.SAVING_TASK_PRESET = "A guardar predefinição de tarefa para {0}"
self.TASK_PRESET_SAVED = "Predefinição de Tarefa Guardada"
self.TASK_PRESET_SAVED_TO = "Predefinição de tarefa guardada em {0}"
self.RESTARTING_TASK = "A reiniciar tarefa: {0}"
self.IN_PROGRESS = "Em Andamento"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = (
"Transferência concluída. Extraído para: {0}"
)
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Binário llama.cpp transferido e extraído para {0}\nFicheiros CUDA extraídos para {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nenhum backend CUDA adequado encontrado para extração"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Binário llama.cpp transferido e extraído para {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "A atualizar versões do llama.cpp"
self.UPDATING_ASSET_LIST = "A atualizar lista de ativos"
self.UPDATING_CUDA_OPTIONS = "A atualizar opções CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "A iniciar transferência do llama.cpp"
self.UPDATING_CUDA_BACKENDS = "A atualizar backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Nenhum backend CUDA selecionado para extração"
self.EXTRACTING_CUDA_FILES = "A extrair ficheiros CUDA de {0} para {1}"
self.DOWNLOAD_ERROR = "Erro de transferência: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "A exibir menu de contexto da tarefa"
self.SHOWING_PROPERTIES_FOR_TASK = "A exibir propriedades para a tarefa: {0}"
self.CANCELLING_TASK = "A cancelar tarefa: {0}"
self.CANCELED = "Cancelado"
self.DELETING_TASK = "A eliminar tarefa: {0}"
self.LOADING_MODELS = "A carregar modelos"
self.LOADED_MODELS = "{0} modelos carregados"
self.BROWSING_FOR_MODELS_DIRECTORY = "A navegar pelo diretório de modelos"
self.SELECT_MODELS_DIRECTORY = "Selecionar Diretório de Modelos"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "A navegar pelo diretório de saída"
self.SELECT_OUTPUT_DIRECTORY = "Selecionar Diretório de Saída"
self.BROWSING_FOR_LOGS_DIRECTORY = "A navegar pelo diretório de logs"
self.SELECT_LOGS_DIRECTORY = "Selecionar Diretório de Logs"
self.BROWSING_FOR_IMATRIX_FILE = "A navegar pelo ficheiro IMatrix"
self.SELECT_IMATRIX_FILE = "Selecionar Ficheiro IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Utilização da CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "A validar entradas de quantização"
self.MODELS_PATH_REQUIRED = "O caminho dos modelos é obrigatório"
self.OUTPUT_PATH_REQUIRED = "O caminho de saída é obrigatório"
self.LOGS_PATH_REQUIRED = "O caminho dos logs é obrigatório"
self.STARTING_MODEL_QUANTIZATION = "A iniciar a quantização do modelo"
self.INPUT_FILE_NOT_EXIST = "O ficheiro de entrada '{0}' não existe."
self.QUANTIZING_MODEL_TO = "A quantizar {0} para {1}"
self.QUANTIZATION_TASK_STARTED = "Tarefa de quantização iniciada para {0}"
self.ERROR_STARTING_QUANTIZATION = "Erro ao iniciar a quantização: {0}"
self.UPDATING_MODEL_INFO = "A atualizar informações do modelo: {0}"
self.TASK_FINISHED = "Tarefa concluída: {0}"
self.SHOWING_TASK_DETAILS_FOR = "A mostrar detalhes da tarefa para: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "A navegar pelo ficheiro de dados IMatrix"
self.SELECT_DATA_FILE = "Selecionar Ficheiro de Dados"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = (
"A navegar pelo ficheiro de modelo IMatrix"
)
self.SELECT_MODEL_FILE = "Selecionar Ficheiro de Modelo"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = (
"A navegar pelo ficheiro de saída IMatrix"
)
self.SELECT_OUTPUT_FILE = "Selecionar Ficheiro de Saída"
self.STARTING_IMATRIX_GENERATION = "A iniciar a geração de IMatrix"
self.BACKEND_PATH_NOT_EXIST = "O caminho do backend não existe: {0}"
self.GENERATING_IMATRIX = "A gerar IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Erro ao iniciar a geração de IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Tarefa de geração de IMatrix iniciada"
self.ERROR_MESSAGE = "Erro: {0}"
self.TASK_ERROR = "Erro de tarefa: {0}"
self.APPLICATION_CLOSING = "A fechar a aplicação"
self.APPLICATION_CLOSED = "Aplicação fechada"
self.SELECT_QUANTIZATION_TYPE = "Selecione o tipo de quantização"
self.ALLOWS_REQUANTIZING = (
"Permite requantizar tensores que já foram quantizados"
)
self.LEAVE_OUTPUT_WEIGHT = "Deixará output.weight não (re)quantizado"
self.DISABLE_K_QUANT_MIXTURES = (
"Desativar misturas k-quant e quantizar todos os tensores para o mesmo tipo"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Usar os dados no ficheiro como matriz de importância para otimizações de quantização"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Usar matriz de importância para estes tensores"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Não usar matriz de importância para estes tensores"
)
self.OUTPUT_TENSOR_TYPE = "Tipo de Tensor de Saída:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Usar este tipo para o tensor output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Tipo de Incorporação de Token:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Usar este tipo para o tensor de incorporações de token"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Irá gerar o modelo quantizado nos mesmos shards da entrada"
)
self.OVERRIDE_MODEL_METADATA = "Substituir metadados do modelo"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Ficheiro de dados de entrada para geração de IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Modelo a ser quantizado"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Caminho de saída para o IMatrix gerado"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Com que frequência guardar o IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Definir valor de offload da GPU (-ngl)"
self.COMPLETED = "Concluído"
self.REFRESH_MODELS = "Atualizar modelos"
class _Greek(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Αυτόματος Κβαντιστής Μοντέλων GGUF)"
self.RAM_USAGE = "Χρήση RAM:"
self.CPU_USAGE = "Χρήση CPU:"
self.BACKEND = "Backend Llama.cpp:"
self.REFRESH_BACKENDS = "Ανανέωση Backends"
self.MODELS_PATH = "Διαδρομή Μοντέλων:"
self.OUTPUT_PATH = "Διαδρομή Εξόδου:"
self.LOGS_PATH = "Διαδρομή Αρχείων Καταγραφής:"
self.BROWSE = "Περιήγηση"
self.AVAILABLE_MODELS = "Διαθέσιμα Μοντέλα:"
self.QUANTIZATION_TYPE = "Τύπος Κβαντισμού:"
self.ALLOW_REQUANTIZE = "Να Επιτρέπεται η Επανακβάντιση"
self.LEAVE_OUTPUT_TENSOR = "Διατήρηση Tensor Εξόδου"
self.PURE = "Καθαρό"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Συμπερίληψη Βαρών:"
self.EXCLUDE_WEIGHTS = "Εξαίρεση Βαρών:"
self.USE_OUTPUT_TENSOR_TYPE = "Χρήση Τύπου Tensor Εξόδου"
self.USE_TOKEN_EMBEDDING_TYPE = "Χρήση Τύπου Ενσωμάτωσης Token"
self.KEEP_SPLIT = "Διατήρηση Διαίρεσης"
self.KV_OVERRIDES = "Υπερβάσεις KV:"
self.ADD_NEW_OVERRIDE = "Προσθήκη Νέας Υπέρβασης"
self.QUANTIZE_MODEL = "Κβάντιση Μοντέλου"
self.SAVE_PRESET = "Αποθήκευση Προεπιλογής"
self.LOAD_PRESET = "Φόρτωση Προεπιλογής"
self.TASKS = "Εργασίες:"
self.DOWNLOAD_LLAMACPP = "Λήψη llama.cpp"
self.SELECT_RELEASE = "Επιλογή Έκδοσης:"
self.SELECT_ASSET = "Επιλογή Στοιχείου:"
self.EXTRACT_CUDA_FILES = "Εξαγωγή Αρχείων CUDA"
self.SELECT_CUDA_BACKEND = "Επιλογή Backend CUDA:"
self.DOWNLOAD = "Λήψη"
self.IMATRIX_GENERATION = "Δημιουργία IMatrix"
self.DATA_FILE = "Αρχείο Δεδομένων:"
self.MODEL = "Μοντέλο:"
self.OUTPUT = "Έξοδος:"
self.OUTPUT_FREQUENCY = "Συχνότητα Εξόδου:"
self.GPU_OFFLOAD = "Εκφόρτωση GPU:"
self.AUTO = "Αυτόματο"
self.GENERATE_IMATRIX = "Δημιουργία IMatrix"
self.ERROR = "Σφάλμα"
self.WARNING = "Προειδοποίηση"
self.PROPERTIES = "Ιδιότητες"
self.CANCEL = "Ακύρωση"
self.RESTART = "Επανεκκίνηση"
self.DELETE = "Διαγραφή"
self.CONFIRM_DELETION = (
"Είστε βέβαιοι ότι θέλετε να διαγράψετε αυτήν την εργασία;"
)
self.TASK_RUNNING_WARNING = "Ορισμένες εργασίες εκτελούνται ακόμη. Είστε βέβαιοι ότι θέλετε να τερματίσετε;"
self.YES = "Ναι"
self.NO = "Όχι"
self.DOWNLOAD_COMPLETE = "Η Λήψη Ολοκληρώθηκε"
self.CUDA_EXTRACTION_FAILED = "Αποτυχία Εξαγωγής CUDA"
self.PRESET_SAVED = "Η Προεπιλογή Αποθηκεύτηκε"
self.PRESET_LOADED = "Η Προεπιλογή Φορτώθηκε"
self.NO_ASSET_SELECTED = "Δεν Έχει Επιλεγεί Στοιχείο"
self.DOWNLOAD_FAILED = "Αποτυχία Λήψης"
self.NO_BACKEND_SELECTED = "Δεν Έχει Επιλεγεί Backend"
self.NO_MODEL_SELECTED = "Δεν Έχει Επιλεγεί Μοντέλο"
self.REFRESH_RELEASES = "Ανανέωση Εκδόσεων"
self.NO_SUITABLE_CUDA_BACKENDS = "Δεν Βρέθηκαν Κατάλληλα Backends CUDA"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "Το Δυαδικό Αρχείο llama.cpp Λήφθηκε και Εξήχθη στο {0}\nΤα Αρχεία CUDA Εξήχθησαν στο {1}"
self.CUDA_FILES_EXTRACTED = "Τα Αρχεία CUDA Εξήχθησαν στο"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Δεν Βρέθηκε Κατάλληλο Backend CUDA για Εξαγωγή"
)
self.ERROR_FETCHING_RELEASES = "Σφάλμα κατά την Ανάκτηση Εκδόσεων: {0}"
self.CONFIRM_DELETION_TITLE = "Επιβεβαίωση Διαγραφής"
self.LOG_FOR = "Αρχείο Καταγραφής για {0}"
self.ALL_FILES = "Όλα τα Αρχεία (*)"
self.GGUF_FILES = "Αρχεία GGUF (*.gguf)"
self.DAT_FILES = "Αρχεία DAT (*.dat)"
self.JSON_FILES = "Αρχεία JSON (*.json)"
self.FAILED_LOAD_PRESET = "Αποτυχία Φόρτωσης Προεπιλογής: {0}"
self.INITIALIZING_AUTOGGUF = "Εκκίνηση Εφαρμογής AutoGGUF"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "Η Εκκίνηση του AutoGGUF Ολοκληρώθηκε"
self.REFRESHING_BACKENDS = "Ανανέωση Backends"
self.NO_BACKENDS_AVAILABLE = "Δεν Υπάρχουν Διαθέσιμα Backends"
self.FOUND_VALID_BACKENDS = "Βρέθηκαν {0} Έγκυρα Backends"
self.SAVING_PRESET = "Αποθήκευση Προεπιλογής"
self.PRESET_SAVED_TO = "Η Προεπιλογή Αποθηκεύτηκε στο {0}"
self.LOADING_PRESET = "Φόρτωση Προεπιλογής"
self.PRESET_LOADED_FROM = "Η Προεπιλογή Φορτώθηκε από το {0}"
self.ADDING_KV_OVERRIDE = "Προσθήκη Υπέρβασης KV: {0}"
self.SAVING_TASK_PRESET = "Αποθήκευση Προεπιλογής Εργασίας για {0}"
self.TASK_PRESET_SAVED = "Η Προεπιλογή Εργασίας Αποθηκεύτηκε"
self.TASK_PRESET_SAVED_TO = "Η Προεπιλογή Εργασίας Αποθηκεύτηκε στο {0}"
self.RESTARTING_TASK = "Επανεκκίνηση Εργασίας: {0}"
self.IN_PROGRESS = "Σε Εξέλιξη"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Η Λήψη Ολοκληρώθηκε. Εξήχθη στο: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "Το Δυαδικό Αρχείο llama.cpp Λήφθηκε και Εξήχθη στο {0}\nΤα Αρχεία CUDA Εξήχθησαν στο {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Δεν Βρέθηκε Κατάλληλο Backend CUDA για Εξαγωγή"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"Το Δυαδικό Αρχείο llama.cpp Λήφθηκε και Εξήχθη στο {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Ανανέωση Εκδόσεων llama.cpp"
self.UPDATING_ASSET_LIST = "Ενημέρωση Λίστας Στοιχείων"
self.UPDATING_CUDA_OPTIONS = "Ενημέρωση Επιλογών CUDA"
self.STARTING_LLAMACPP_DOWNLOAD = "Έναρξη Λήψης llama.cpp"
self.UPDATING_CUDA_BACKENDS = "Ενημέρωση Backends CUDA"
self.NO_CUDA_BACKEND_SELECTED = "Δεν Έχει Επιλεγεί Backend CUDA για Εξαγωγή"
self.EXTRACTING_CUDA_FILES = "Εξαγωγή Αρχείων CUDA από {0} στο {1}"
self.DOWNLOAD_ERROR = "Σφάλμα Λήψης: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Εμφάνιση Μενού Περιεχομένου Εργασίας"
self.SHOWING_PROPERTIES_FOR_TASK = "Εμφάνιση Ιδιοτήτων για την Εργασία: {0}"
self.CANCELLING_TASK = "Ακύρωση Εργασίας: {0}"
self.CANCELED = "Ακυρώθηκε"
self.DELETING_TASK = "Διαγραφή Εργασίας: {0}"
self.LOADING_MODELS = "Φόρτωση Μοντέλων"
self.LOADED_MODELS = "{0} Μοντέλα Φορτώθηκαν"
self.BROWSING_FOR_MODELS_DIRECTORY = "Περιήγηση σε Φάκελο Μοντέλων"
self.SELECT_MODELS_DIRECTORY = "Επιλέξτε Φάκελο Μοντέλων"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Περιήγηση σε Φάκελο Εξόδου"
self.SELECT_OUTPUT_DIRECTORY = "Επιλέξτε Φάκελο Εξόδου"
self.BROWSING_FOR_LOGS_DIRECTORY = "Περιήγηση σε Φάκελο Αρχείων Καταγραφής"
self.SELECT_LOGS_DIRECTORY = "Επιλέξτε Φάκελο Αρχείων Καταγραφής"
self.BROWSING_FOR_IMATRIX_FILE = "Περιήγηση σε Αρχείο IMatrix"
self.SELECT_IMATRIX_FILE = "Επιλέξτε Αρχείο IMatrix"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "Χρήση CPU: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Επικύρωση Εισόδων Κβαντισμού"
self.MODELS_PATH_REQUIRED = "Απαιτείται η Διαδρομή Μοντέλων"
self.OUTPUT_PATH_REQUIRED = "Απαιτείται η Διαδρομή Εξόδου"
self.LOGS_PATH_REQUIRED = "Απαιτείται η Διαδρομή Αρχείων Καταγραφής"
self.STARTING_MODEL_QUANTIZATION = "Έναρξη Κβαντισμού Μοντέλου"
self.INPUT_FILE_NOT_EXIST = "Το Αρχείο Εισόδου '{0}' Δεν Υπάρχει."
self.QUANTIZING_MODEL_TO = "Κβάντιση του {0} σε {1}"
self.QUANTIZATION_TASK_STARTED = "Η Εργασία Κβαντισμού Ξεκίνησε για {0}"
self.ERROR_STARTING_QUANTIZATION = "Σφάλμα κατά την Έναρξη Κβαντισμού: {0}"
self.UPDATING_MODEL_INFO = "Ενημέρωση Πληροφοριών Μοντέλου: {0}"
self.TASK_FINISHED = "Η Εργασία Ολοκληρώθηκε: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Εμφάνιση Λεπτομερειών Εργασίας για: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Περιήγηση σε Αρχείο Δεδομένων IMatrix"
self.SELECT_DATA_FILE = "Επιλέξτε Αρχείο Δεδομένων"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Περιήγηση σε Αρχείο Μοντέλου IMatrix"
self.SELECT_MODEL_FILE = "Επιλέξτε Αρχείο Μοντέλου"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Περιήγηση σε Αρχείο Εξόδου IMatrix"
self.SELECT_OUTPUT_FILE = "Επιλέξτε Αρχείο Εξόδου"
self.STARTING_IMATRIX_GENERATION = "Έναρξη Δημιουργίας IMatrix"
self.BACKEND_PATH_NOT_EXIST = "Η Διαδρομή Backend Δεν Υπάρχει: {0}"
self.GENERATING_IMATRIX = "Δημιουργία IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Σφάλμα κατά την Έναρξη Δημιουργίας IMatrix: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "Η Εργασία Δημιουργίας IMatrix Ξεκίνησε"
self.ERROR_MESSAGE = "Σφάλμα: {0}"
self.TASK_ERROR = "Σφάλμα Εργασίας: {0}"
self.APPLICATION_CLOSING = "Κλείσιμο Εφαρμογής"
self.APPLICATION_CLOSED = "Η Εφαρμογή Έκλεισε"
self.SELECT_QUANTIZATION_TYPE = "Επιλέξτε τον τύπο κβαντισμού"
self.ALLOWS_REQUANTIZING = (
"Επιτρέπει την επανακβάντιση τανυστών που έχουν ήδη κβαντιστεί"
)
self.LEAVE_OUTPUT_WEIGHT = "Θα αφήσει το output.weight χωρίς (επανα)κβάντιση"
self.DISABLE_K_QUANT_MIXTURES = "Απενεργοποιήστε τα μείγματα k-quant και κβαντίστε όλους τους τανυστές στον ίδιο τύπο"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Χρησιμοποιήστε τα δεδομένα στο αρχείο ως πίνακα σημασίας για βελτιστοποιήσεις κβαντισμού"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Χρησιμοποιήστε τον πίνακα σημασίας για αυτούς τους τανυστές"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Μην χρησιμοποιείτε τον πίνακα σημασίας για αυτούς τους τανυστές"
)
self.OUTPUT_TENSOR_TYPE = "Τύπος Tensor Εξόδου:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Χρησιμοποιήστε αυτόν τον τύπο για τον τανυστή output.weight"
)
self.TOKEN_EMBEDDING_TYPE = "Τύπος Ενσωμάτωσης Token:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Χρησιμοποιήστε αυτόν τον τύπο για τον τανυστή ενσωματώσεων token"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Θα δημιουργήσει το κβαντισμένο μοντέλο στα ίδια θραύσματα με την είσοδο"
)
self.OVERRIDE_MODEL_METADATA = "Αντικατάσταση μεταδεδομένων μοντέλου"
self.INPUT_DATA_FILE_FOR_IMATRIX = (
"Αρχείο δεδομένων εισόδου για τη δημιουργία IMatrix"
)
self.MODEL_TO_BE_QUANTIZED = "Μοντέλο προς κβάντιση"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = (
"Διαδρομή εξόδου για το δημιουργημένο IMatrix"
)
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Πόσο συχνά να αποθηκεύεται το IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Ορίστε την τιμή εκφόρτωσης GPU (-ngl)"
self.COMPLETED = "Ολοκληρώθηκε"
self.REFRESH_MODELS = "Ανανέωση μοντέλων"
class _Hungarian(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (Automatizált GGUF modell kvantáló)"
self.RAM_USAGE = "RAM használat:"
self.CPU_USAGE = "CPU használat:"
self.BACKEND = "Llama.cpp háttérrendszer:"
self.REFRESH_BACKENDS = "Háttérrendszerek frissítése"
self.MODELS_PATH = "Modellek elérési útja:"
self.OUTPUT_PATH = "Kimeneti útvonal:"
self.LOGS_PATH = "Naplók elérési útja:"
self.BROWSE = "Tallózás"
self.AVAILABLE_MODELS = "Elérhető modellek:"
self.QUANTIZATION_TYPE = "Kvantálási típus:"
self.ALLOW_REQUANTIZE = "Újrakvantálás engedélyezése"
self.LEAVE_OUTPUT_TENSOR = "Kimeneti tenzor meghagyása"
self.PURE = "Tiszta"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Súlyok belefoglalása:"
self.EXCLUDE_WEIGHTS = "Súlyok kizárása:"
self.USE_OUTPUT_TENSOR_TYPE = "Kimeneti tenzor típusának használata"
self.USE_TOKEN_EMBEDDING_TYPE = "Token beágyazási típusának használata"
self.KEEP_SPLIT = "Felosztás megtartása"
self.KV_OVERRIDES = "KV felülbírálások:"
self.ADD_NEW_OVERRIDE = "Új felülbírálás hozzáadása"
self.QUANTIZE_MODEL = "Modell kvantálása"
self.SAVE_PRESET = "Esetbeállítás mentése"
self.LOAD_PRESET = "Esetbeállítás betöltése"
self.TASKS = "Feladatok:"
self.DOWNLOAD_LLAMACPP = "llama.cpp letöltése"
self.SELECT_RELEASE = "Kiadás kiválasztása:"
self.SELECT_ASSET = "Eszköz kiválasztása:"
self.EXTRACT_CUDA_FILES = "CUDA fájlok kibontása"
self.SELECT_CUDA_BACKEND = "CUDA háttérrendszer kiválasztása:"
self.DOWNLOAD = "Letöltés"
self.IMATRIX_GENERATION = "IMatrix generálás"
self.DATA_FILE = "Adatfájl:"
self.MODEL = "Modell:"
self.OUTPUT = "Kimenet:"
self.OUTPUT_FREQUENCY = "Kimeneti frekvencia:"
self.GPU_OFFLOAD = "GPU tehermentesítés:"
self.AUTO = "Automatikus"
self.GENERATE_IMATRIX = "IMatrix generálása"
self.ERROR = "Hiba"
self.WARNING = "Figyelmeztetés"
self.PROPERTIES = "Tulajdonságok"
self.CANCEL = "Mégse"
self.RESTART = "Újraindítás"
self.DELETE = "Törlés"
self.CONFIRM_DELETION = "Biztosan törölni szeretné ezt a feladatot?"
self.TASK_RUNNING_WARNING = "Néhány feladat még fut. Biztosan kilép?"
self.YES = "Igen"
self.NO = "Nem"
self.DOWNLOAD_COMPLETE = "Letöltés befejeződött"
self.CUDA_EXTRACTION_FAILED = "CUDA kibontás sikertelen"
self.PRESET_SAVED = "Esetbeállítás mentve"
self.PRESET_LOADED = "Esetbeállítás betöltve"
self.NO_ASSET_SELECTED = "Nincs kiválasztott eszköz"
self.DOWNLOAD_FAILED = "Letöltés sikertelen"
self.NO_BACKEND_SELECTED = "Nincs kiválasztott háttérrendszer"
self.NO_MODEL_SELECTED = "Nincs kiválasztott modell"
self.REFRESH_RELEASES = "Kiadások frissítése"
self.NO_SUITABLE_CUDA_BACKENDS = "Nem található megfelelő CUDA háttérrendszer"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "A llama.cpp bináris fájl letöltve és kibontva ide: {0}\nA CUDA fájlok kibontva ide: {1}"
self.CUDA_FILES_EXTRACTED = "A CUDA fájlok kibontva ide:"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"Nem található megfelelő CUDA háttérrendszer a kibontáshoz"
)
self.ERROR_FETCHING_RELEASES = "Hiba a kiadások lekérdezésekor: {0}"
self.CONFIRM_DELETION_TITLE = "Törlés megerősítése"
self.LOG_FOR = "Napló a következőhöz: {0}"
self.ALL_FILES = "Minden fájl (*)"
self.GGUF_FILES = "GGUF fájlok (*.gguf)"
self.DAT_FILES = "DAT fájlok (*.dat)"
self.JSON_FILES = "JSON fájlok (*.json)"
self.FAILED_LOAD_PRESET = "Az esetbeállítás betöltése sikertelen: {0}"
self.INITIALIZING_AUTOGGUF = "Az AutoGGUF alkalmazás inicializálása"
self.AUTOGGUF_INITIALIZATION_COMPLETE = (
"Az AutoGGUF inicializálása befejeződött"
)
self.REFRESHING_BACKENDS = "Háttérrendszerek frissítése"
self.NO_BACKENDS_AVAILABLE = "Nincsenek elérhető háttérrendszerek"
self.FOUND_VALID_BACKENDS = "{0} érvényes háttérrendszer található"
self.SAVING_PRESET = "Esetbeállítás mentése"
self.PRESET_SAVED_TO = "Esetbeállítás mentve ide: {0}"
self.LOADING_PRESET = "Esetbeállítás betöltése"
self.PRESET_LOADED_FROM = "Esetbeállítás betöltve innen: {0}"
self.ADDING_KV_OVERRIDE = "KV felülbírálás hozzáadása: {0}"
self.SAVING_TASK_PRESET = "Feladat esetbeállítás mentése ehhez: {0}"
self.TASK_PRESET_SAVED = "Feladat esetbeállítás mentve"
self.TASK_PRESET_SAVED_TO = "Feladat esetbeállítás mentve ide: {0}"
self.RESTARTING_TASK = "Feladat újraindítása: {0}"
self.IN_PROGRESS = "Folyamatban"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Letöltés befejeződött. Kibontva ide: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "A llama.cpp bináris fájl letöltve és kibontva ide: {0}\nA CUDA fájlok kibontva ide: {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"Nem található megfelelő CUDA háttérrendszer a kibontáshoz"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"A llama.cpp bináris fájl letöltve és kibontva ide: {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "A llama.cpp kiadások frissítése"
self.UPDATING_ASSET_LIST = "Eszközlista frissítése"
self.UPDATING_CUDA_OPTIONS = "CUDA beállítások frissítése"
self.STARTING_LLAMACPP_DOWNLOAD = "A llama.cpp letöltésének megkezdése"
self.UPDATING_CUDA_BACKENDS = "CUDA háttérrendszerek frissítése"
self.NO_CUDA_BACKEND_SELECTED = (
"Nincs kiválasztott CUDA háttérrendszer a kibontáshoz"
)
self.EXTRACTING_CUDA_FILES = "CUDA fájlok kibontása innen: {0} ide: {1}"
self.DOWNLOAD_ERROR = "Letöltési hiba: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Feladat helyi menüjének megjelenítése"
self.SHOWING_PROPERTIES_FOR_TASK = "Feladat tulajdonságainak megjelenítése: {0}"
self.CANCELLING_TASK = "Feladat megszakítása: {0}"
self.CANCELED = "Megszakítva"
self.DELETING_TASK = "Feladat törlése: {0}"
self.LOADING_MODELS = "Modellek betöltése"
self.LOADED_MODELS = "{0} modell betöltve"
self.BROWSING_FOR_MODELS_DIRECTORY = "Modellek könyvtárának tallózása"
self.SELECT_MODELS_DIRECTORY = "Modellek könyvtárának kiválasztása"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Kimeneti könyvtár tallózása"
self.SELECT_OUTPUT_DIRECTORY = "Kimeneti könyvtár kiválasztása"
self.BROWSING_FOR_LOGS_DIRECTORY = "Naplók könyvtárának tallózása"
self.SELECT_LOGS_DIRECTORY = "Naplók könyvtárának kiválasztása"
self.BROWSING_FOR_IMATRIX_FILE = "IMatrix fájl tallózása"
self.SELECT_IMATRIX_FILE = "IMatrix fájl kiválasztása"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU használat: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Kvantálási bemenetek ellenőrzése"
self.MODELS_PATH_REQUIRED = "A modellek elérési útja kötelező"
self.OUTPUT_PATH_REQUIRED = "A kimeneti útvonal kötelező"
self.LOGS_PATH_REQUIRED = "A naplók elérési útja kötelező"
self.STARTING_MODEL_QUANTIZATION = "Modell kvantálásának indítása"
self.INPUT_FILE_NOT_EXIST = "A bemeneti fájl '{0}' nem létezik."
self.QUANTIZING_MODEL_TO = "{0} kvantálása erre: {1}"
self.QUANTIZATION_TASK_STARTED = "Kvantálási feladat elindítva ehhez: {0}"
self.ERROR_STARTING_QUANTIZATION = "Hiba a kvantálás indításakor: {0}"
self.UPDATING_MODEL_INFO = "Modellinformációk frissítése: {0}"
self.TASK_FINISHED = "Feladat befejezve: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Feladat részleteinek megjelenítése ehhez: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "IMatrix adatfájl tallózása"
self.SELECT_DATA_FILE = "Adatfájl kiválasztása"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "IMatrix modellfájl tallózása"
self.SELECT_MODEL_FILE = "Modellfájl kiválasztása"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "IMatrix kimeneti fájl tallózása"
self.SELECT_OUTPUT_FILE = "Kimeneti fájl kiválasztása"
self.STARTING_IMATRIX_GENERATION = "IMatrix generálásának indítása"
self.BACKEND_PATH_NOT_EXIST = "A háttérrendszer elérési útja nem létezik: {0}"
self.GENERATING_IMATRIX = "IMatrix generálása"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Hiba az IMatrix generálásának indításakor: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix generálási feladat elindítva"
self.ERROR_MESSAGE = "Hiba: {0}"
self.TASK_ERROR = "Feladat hiba: {0}"
self.APPLICATION_CLOSING = "Alkalmazás bezárása"
self.APPLICATION_CLOSED = "Alkalmazás bezárva"
self.SELECT_QUANTIZATION_TYPE = "Válassza ki a kvantálási típust"
self.ALLOWS_REQUANTIZING = (
"Lehetővé teszi a már kvantált tenzorok újrakvantálását"
)
self.LEAVE_OUTPUT_WEIGHT = "Az output.weight-et (újra)kvantálatlanul hagyja"
self.DISABLE_K_QUANT_MIXTURES = "Tiltsa le a k-kvant keverékeket, és kvantálja az összes tenzort ugyanarra a típusra"
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Használja a fájlban lévő adatokat fontossági mátrixként a kvantálási optimalizálásokhoz"
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Használja a fontossági mátrixot ezekre a tenzorokra"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Ne használja a fontossági mátrixot ezekre a tenzorokra"
)
self.OUTPUT_TENSOR_TYPE = "Kimeneti tenzor típusa:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Használja ezt a típust az output.weight tenzorhoz"
)
self.TOKEN_EMBEDDING_TYPE = "Token beágyazási típusa:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Használja ezt a típust a token beágyazási tenzorhoz"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = "A kvantált modellt ugyanazokban a szegmensekben fogja generálni, mint a bemenet"
self.OVERRIDE_MODEL_METADATA = "Modell metaadatok felülbírálása"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix generáláshoz bemeneti adatfájl"
self.MODEL_TO_BE_QUANTIZED = "Kvantálandó modell"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "A generált IMatrix kimeneti útvonala"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "Milyen gyakran mentse az IMatrixot"
self.SET_GPU_OFFLOAD_VALUE = "GPU tehermentesítési érték beállítása (-ngl)"
self.COMPLETED = "Befejezve"
self.REFRESH_MODELS = "Modellek frissítése"
class _BritishEnglish(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (automated GGUF model quantiser)"
self.RAM_USAGE = "RAM Usage:"
self.CPU_USAGE = "CPU Usage:"
self.BACKEND = "Llama.cpp Backend:"
self.REFRESH_BACKENDS = "Refresh Backends"
self.MODELS_PATH = "Models Path:"
self.OUTPUT_PATH = "Output Path:"
self.LOGS_PATH = "Logs Path:"
self.BROWSE = "Browse"
self.AVAILABLE_MODELS = "Available Models:"
self.QUANTIZATION_TYPE = "Quantisation Type:" # Note the British spelling
self.ALLOW_REQUANTIZE = "Allow Requantise"
self.LEAVE_OUTPUT_TENSOR = "Leave Output Tensor"
self.PURE = "Pure"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Include Weights:"
self.EXCLUDE_WEIGHTS = "Exclude Weights:"
self.USE_OUTPUT_TENSOR_TYPE = "Use Output Tensor Type"
self.USE_TOKEN_EMBEDDING_TYPE = "Use Token Embedding Type"
self.KEEP_SPLIT = "Keep Split"
self.KV_OVERRIDES = "KV Overrides:"
self.ADD_NEW_OVERRIDE = "Add new override"
self.QUANTIZE_MODEL = "Quantise Model" # Note the British spelling
self.SAVE_PRESET = "Save Preset"
self.LOAD_PRESET = "Load Preset"
self.TASKS = "Tasks:"
self.DOWNLOAD_LLAMACPP = "Download llama.cpp"
self.SELECT_RELEASE = "Select Release:"
self.SELECT_ASSET = "Select Asset:"
self.EXTRACT_CUDA_FILES = "Extract CUDA files"
self.SELECT_CUDA_BACKEND = "Select CUDA Backend:"
self.DOWNLOAD = "Download"
self.IMATRIX_GENERATION = "IMatrix Generation"
self.DATA_FILE = "Data File:"
self.MODEL = "Model:"
self.OUTPUT = "Output:"
self.OUTPUT_FREQUENCY = "Output Frequency:"
self.GPU_OFFLOAD = "GPU Offload:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Generate IMatrix"
self.ERROR = "Error"
self.WARNING = "Warning"
self.PROPERTIES = "Properties"
self.CANCEL = "Cancel"
self.RESTART = "Restart"
self.DELETE = "Delete"
self.CONFIRM_DELETION = "Are you sure you want to delete this task?"
self.TASK_RUNNING_WARNING = (
"Some tasks are still running. Are you sure you want to quit?"
)
self.YES = "Yes"
self.NO = "No"
self.DOWNLOAD_COMPLETE = "Download Complete"
self.CUDA_EXTRACTION_FAILED = "CUDA Extraction Failed"
self.PRESET_SAVED = "Preset Saved"
self.PRESET_LOADED = "Preset Loaded"
self.NO_ASSET_SELECTED = "No asset selected"
self.DOWNLOAD_FAILED = "Download failed"
self.NO_BACKEND_SELECTED = "No backend selected"
self.NO_MODEL_SELECTED = "No model selected"
self.REFRESH_RELEASES = "Refresh Releases"
self.NO_SUITABLE_CUDA_BACKENDS = "No suitable CUDA backends found"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp binary downloaded and extracted to {0}\nCUDA files extracted to {1}"
self.CUDA_FILES_EXTRACTED = "CUDA files extracted to"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"No suitable CUDA backend found for extraction"
)
self.ERROR_FETCHING_RELEASES = "Error fetching releases: {0}"
self.CONFIRM_DELETION_TITLE = "Confirm Deletion"
self.LOG_FOR = "Log for {0}"
self.ALL_FILES = "All Files (*)"
self.GGUF_FILES = "GGUF Files (*.gguf)"
self.DAT_FILES = "DAT Files (*.dat)"
self.JSON_FILES = "JSON Files (*.json)"
self.FAILED_LOAD_PRESET = "Failed to load preset: {0}"
self.INITIALIZING_AUTOGGUF = (
"Initialising AutoGGUF application" # Note the British spelling
)
self.AUTOGGUF_INITIALIZATION_COMPLETE = (
"AutoGGUF initialisation complete" # Note the British spelling
)
self.REFRESHING_BACKENDS = "Refreshing backends"
self.NO_BACKENDS_AVAILABLE = "No backends available"
self.FOUND_VALID_BACKENDS = "Found {0} valid backends"
self.SAVING_PRESET = "Saving preset"
self.PRESET_SAVED_TO = "Preset saved to {0}"
self.LOADING_PRESET = "Loading preset"
self.PRESET_LOADED_FROM = "Preset loaded from {0}"
self.ADDING_KV_OVERRIDE = "Adding KV override: {0}"
self.SAVING_TASK_PRESET = "Saving task preset for {0}"
self.TASK_PRESET_SAVED = "Task Preset Saved"
self.TASK_PRESET_SAVED_TO = "Task preset saved to {0}"
self.RESTARTING_TASK = "Restarting task: {0}"
self.IN_PROGRESS = "In Progress"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download finished. Extracted to: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp binary downloaded and extracted to {0}\nCUDA files extracted to {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"No suitable CUDA backend found for extraction"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binary downloaded and extracted to {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Refreshing llama.cpp releases"
self.UPDATING_ASSET_LIST = "Updating asset list"
self.UPDATING_CUDA_OPTIONS = "Updating CUDA options"
self.STARTING_LLAMACPP_DOWNLOAD = "Starting llama.cpp download"
self.UPDATING_CUDA_BACKENDS = "Updating CUDA backends"
self.NO_CUDA_BACKEND_SELECTED = "No CUDA backend selected for extraction"
self.EXTRACTING_CUDA_FILES = "Extracting CUDA files from {0} to {1}"
self.DOWNLOAD_ERROR = "Download error: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Showing task context menu"
self.SHOWING_PROPERTIES_FOR_TASK = "Showing properties for task: {0}"
self.CANCELLING_TASK = "Cancelling task: {0}"
self.CANCELED = "Cancelled"
self.DELETING_TASK = "Deleting task: {0}"
self.LOADING_MODELS = "Loading models"
self.LOADED_MODELS = "Loaded {0} models"
self.BROWSING_FOR_MODELS_DIRECTORY = "Browsing for models directory"
self.SELECT_MODELS_DIRECTORY = "Select Models Directory"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Browsing for output directory"
self.SELECT_OUTPUT_DIRECTORY = "Select Output Directory"
self.BROWSING_FOR_LOGS_DIRECTORY = "Browsing for logs directory"
self.SELECT_LOGS_DIRECTORY = "Select Logs Directory"
self.BROWSING_FOR_IMATRIX_FILE = "Browsing for IMatrix file"
self.SELECT_IMATRIX_FILE = "Select IMatrix File"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU Usage: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = (
"Validating quantisation inputs" # Note the British spelling
)
self.MODELS_PATH_REQUIRED = "Models path is required"
self.OUTPUT_PATH_REQUIRED = "Output path is required"
self.LOGS_PATH_REQUIRED = "Logs path is required"
self.STARTING_MODEL_QUANTIZATION = (
"Starting model quantisation" # Note the British spelling
)
self.INPUT_FILE_NOT_EXIST = "Input file '{0}' does not exist."
self.QUANTIZING_MODEL_TO = "Quantizing {0} to {1}"
self.QUANTIZATION_TASK_STARTED = (
"Quantisation task started for {0}" # Note the British spelling
)
self.ERROR_STARTING_QUANTIZATION = (
"Error starting quantisation: {0}" # Note the British spelling
)
self.UPDATING_MODEL_INFO = "Updating model info: {0}"
self.TASK_FINISHED = "Task finished: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Showing task details for: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Browsing for IMatrix data file"
self.SELECT_DATA_FILE = "Select Data File"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Browsing for IMatrix model file"
self.SELECT_MODEL_FILE = "Select Model File"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Browsing for IMatrix output file"
self.SELECT_OUTPUT_FILE = "Select Output File"
self.STARTING_IMATRIX_GENERATION = "Starting IMatrix generation"
self.BACKEND_PATH_NOT_EXIST = "Backend path does not exist: {0}"
self.GENERATING_IMATRIX = "Generating IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Error starting IMatrix generation: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix generation task started"
self.ERROR_MESSAGE = "Error: {0}"
self.TASK_ERROR = "Task error: {0}"
self.APPLICATION_CLOSING = "Application closing"
self.APPLICATION_CLOSED = "Application closed"
self.SELECT_QUANTIZATION_TYPE = (
"Select the quantisation type" # Note the British spelling
)
self.ALLOWS_REQUANTIZING = "Allows requantising tensors that have already been quantised" # Note the British spelling
self.LEAVE_OUTPUT_WEIGHT = "Will leave output.weight un(re)quantised"
self.DISABLE_K_QUANT_MIXTURES = "Disable k-quant mixtures and quantise all tensors to the same type" # Note the British spelling
self.USE_DATA_AS_IMPORTANCE_MATRIX = "Use data in file as importance matrix for quant optimisations" # Note the British spelling
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Use importance matrix for these tensors"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Don't use importance matrix for these tensors"
)
self.OUTPUT_TENSOR_TYPE = "Output Tensor Type:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Use this type for the output.weight tensor"
)
self.TOKEN_EMBEDDING_TYPE = "Token Embedding Type:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Use this type for the token embeddings tensor"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = "Will generate quantised model in the same shards as input" # Note the British spelling
self.OVERRIDE_MODEL_METADATA = "Override model metadata"
self.INPUT_DATA_FILE_FOR_IMATRIX = "Input data file for IMatrix generation"
self.MODEL_TO_BE_QUANTIZED = (
"Model to be quantised" # Note the British spelling
)
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Output path for the generated IMatrix"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "How often to save the IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Set GPU offload value (-ngl)"
self.COMPLETED = "Completed"
self.REFRESH_MODELS = "Refresh Models"
class _IndianEnglish(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (automated GGUF model quantizer)"
self.RAM_USAGE = "RAM Usage:"
self.CPU_USAGE = "CPU Usage:"
self.BACKEND = "Llama.cpp Backend:"
self.REFRESH_BACKENDS = "Refresh Backends"
self.MODELS_PATH = "Models Path:"
self.OUTPUT_PATH = "Output Path:"
self.LOGS_PATH = "Logs Path:"
self.BROWSE = "Browse"
self.AVAILABLE_MODELS = "Available Models:"
self.QUANTIZATION_TYPE = "Quantization Type:"
self.ALLOW_REQUANTIZE = "Allow Requantize"
self.LEAVE_OUTPUT_TENSOR = "Leave Output Tensor"
self.PURE = "Pure"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Include Weights:"
self.EXCLUDE_WEIGHTS = "Exclude Weights:"
self.USE_OUTPUT_TENSOR_TYPE = "Use Output Tensor Type"
self.USE_TOKEN_EMBEDDING_TYPE = "Use Token Embedding Type"
self.KEEP_SPLIT = "Keep Split"
self.KV_OVERRIDES = "KV Overrides:"
self.ADD_NEW_OVERRIDE = "Add new override"
self.QUANTIZE_MODEL = "Quantize Model"
self.SAVE_PRESET = "Save Preset"
self.LOAD_PRESET = "Load Preset"
self.TASKS = "Tasks:"
self.DOWNLOAD_LLAMACPP = "Download llama.cpp"
self.SELECT_RELEASE = "Select Release:"
self.SELECT_ASSET = "Select Asset:"
self.EXTRACT_CUDA_FILES = "Extract CUDA files"
self.SELECT_CUDA_BACKEND = "Select CUDA Backend:"
self.DOWNLOAD = "Download"
self.IMATRIX_GENERATION = "IMatrix Generation"
self.DATA_FILE = "Data File:"
self.MODEL = "Model:"
self.OUTPUT = "Output:"
self.OUTPUT_FREQUENCY = "Output Frequency:"
self.GPU_OFFLOAD = "GPU Offload:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Generate IMatrix"
self.ERROR = "Error"
self.WARNING = "Warning"
self.PROPERTIES = "Properties"
self.CANCEL = "Cancel"
self.RESTART = "Restart"
self.DELETE = "Delete"
self.CONFIRM_DELETION = "Are you sure you want to delete this task?"
self.TASK_RUNNING_WARNING = (
"Some tasks are still running. Are you sure you want to quit?"
)
self.YES = "Yes"
self.NO = "No"
self.DOWNLOAD_COMPLETE = "Download Complete"
self.CUDA_EXTRACTION_FAILED = "CUDA Extraction Failed"
self.PRESET_SAVED = "Preset Saved"
self.PRESET_LOADED = "Preset Loaded"
self.NO_ASSET_SELECTED = "No asset selected"
self.DOWNLOAD_FAILED = "Download failed"
self.NO_BACKEND_SELECTED = "No backend selected"
self.NO_MODEL_SELECTED = "No model selected"
self.REFRESH_RELEASES = "Refresh Releases"
self.NO_SUITABLE_CUDA_BACKENDS = "No suitable CUDA backends found"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp binary downloaded and extracted to {0}\nCUDA files extracted to {1}"
self.CUDA_FILES_EXTRACTED = "CUDA files extracted to"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"No suitable CUDA backend found for extraction"
)
self.ERROR_FETCHING_RELEASES = "Error fetching releases: {0}"
self.CONFIRM_DELETION_TITLE = "Confirm Deletion"
self.LOG_FOR = "Log for {0}"
self.ALL_FILES = "All Files (*)"
self.GGUF_FILES = "GGUF Files (*.gguf)"
self.DAT_FILES = "DAT Files (*.dat)"
self.JSON_FILES = "JSON Files (*.json)"
self.FAILED_LOAD_PRESET = "Failed to load preset: {0}"
self.INITIALIZING_AUTOGGUF = "Initializing AutoGGUF application"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF initialization complete"
self.REFRESHING_BACKENDS = "Refreshing backends"
self.NO_BACKENDS_AVAILABLE = "No backends available"
self.FOUND_VALID_BACKENDS = "Found {0} valid backends"
self.SAVING_PRESET = "Saving preset"
self.PRESET_SAVED_TO = "Preset saved to {0}"
self.LOADING_PRESET = "Loading preset"
self.PRESET_LOADED_FROM = "Preset loaded from {0}"
self.ADDING_KV_OVERRIDE = "Adding KV override: {0}"
self.SAVING_TASK_PRESET = "Saving task preset for {0}"
self.TASK_PRESET_SAVED = "Task Preset Saved"
self.TASK_PRESET_SAVED_TO = "Task preset saved to {0}"
self.RESTARTING_TASK = "Restarting task: {0}"
self.IN_PROGRESS = "In Progress"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download finished. Extracted to: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp binary downloaded and extracted to {0}\nCUDA files extracted to {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"No suitable CUDA backend found for extraction"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binary downloaded and extracted to {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Refreshing llama.cpp releases"
self.UPDATING_ASSET_LIST = "Updating asset list"
self.UPDATING_CUDA_OPTIONS = "Updating CUDA options"
self.STARTING_LLAMACPP_DOWNLOAD = "Starting llama.cpp download"
self.UPDATING_CUDA_BACKENDS = "Updating CUDA backends"
self.NO_CUDA_BACKEND_SELECTED = "No CUDA backend selected for extraction"
self.EXTRACTING_CUDA_FILES = "Extracting CUDA files from {0} to {1}"
self.DOWNLOAD_ERROR = "Download error: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Showing task context menu"
self.SHOWING_PROPERTIES_FOR_TASK = "Showing properties for task: {0}"
self.CANCELLING_TASK = "Cancelling task: {0}"
self.CANCELED = "Cancelled"
self.DELETING_TASK = "Deleting task: {0}"
self.LOADING_MODELS = "Loading models"
self.LOADED_MODELS = "Loaded {0} models"
self.BROWSING_FOR_MODELS_DIRECTORY = "Browsing for models directory"
self.SELECT_MODELS_DIRECTORY = "Select Models Directory"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Browsing for output directory"
self.SELECT_OUTPUT_DIRECTORY = "Select Output Directory"
self.BROWSING_FOR_LOGS_DIRECTORY = "Browsing for logs directory"
self.SELECT_LOGS_DIRECTORY = "Select Logs Directory"
self.BROWSING_FOR_IMATRIX_FILE = "Browsing for IMatrix file"
self.SELECT_IMATRIX_FILE = "Select IMatrix File"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU Usage: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validating quantization inputs"
self.MODELS_PATH_REQUIRED = "Models path is required"
self.OUTPUT_PATH_REQUIRED = "Output path is required"
self.LOGS_PATH_REQUIRED = "Logs path is required"
self.STARTING_MODEL_QUANTIZATION = "Starting model quantization"
self.INPUT_FILE_NOT_EXIST = "Input file '{0}' does not exist."
self.QUANTIZING_MODEL_TO = "Quantizing {0} to {1}"
self.QUANTIZATION_TASK_STARTED = "Quantization task started for {0}"
self.ERROR_STARTING_QUANTIZATION = "Error starting quantization: {0}"
self.UPDATING_MODEL_INFO = "Updating model info: {0}"
self.TASK_FINISHED = "Task finished: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Showing task details for: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Browsing for IMatrix data file"
self.SELECT_DATA_FILE = "Select Data File"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Browsing for IMatrix model file"
self.SELECT_MODEL_FILE = "Select Model File"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Browsing for IMatrix output file"
self.SELECT_OUTPUT_FILE = "Select Output File"
self.STARTING_IMATRIX_GENERATION = "Starting IMatrix generation"
self.BACKEND_PATH_NOT_EXIST = "Backend path does not exist: {0}"
self.GENERATING_IMATRIX = "Generating IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Error starting IMatrix generation: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix generation task started"
self.ERROR_MESSAGE = "Error: {0}"
self.TASK_ERROR = "Task error: {0}"
self.APPLICATION_CLOSING = "Application closing"
self.APPLICATION_CLOSED = "Application closed"
self.SELECT_QUANTIZATION_TYPE = "Select the quantization type"
self.ALLOWS_REQUANTIZING = (
"Allows requantizing tensors that have already been quantized"
)
self.LEAVE_OUTPUT_WEIGHT = "Will leave output.weight un(re)quantized"
self.DISABLE_K_QUANT_MIXTURES = (
"Disable k-quant mixtures and quantize all tensors to the same type"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"Use data in file as importance matrix for quant optimisations"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Use importance matrix for these tensors"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Don't use importance matrix for these tensors"
)
self.OUTPUT_TENSOR_TYPE = "Output Tensor Type:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Use this type for the output.weight tensor"
)
self.TOKEN_EMBEDDING_TYPE = "Token Embedding Type:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Use this type for the token embeddings tensor"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Will generate quantized model in the same shards as input"
)
self.OVERRIDE_MODEL_METADATA = "Override model metadata"
self.INPUT_DATA_FILE_FOR_IMATRIX = "Input data file for IMatrix generation"
self.MODEL_TO_BE_QUANTIZED = "Model to be quantized"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Output path for the generated IMatrix"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "How often to save the IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Set GPU offload value (-ngl)"
self.COMPLETED = "Completed"
self.REFRESH_MODELS = "Refresh Models"
class _CanadianEnglish(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF (automated GGUF model quantizer)"
self.RAM_USAGE = "RAM Usage:"
self.CPU_USAGE = "CPU Usage:"
self.BACKEND = "Llama.cpp Backend:"
self.REFRESH_BACKENDS = "Refresh Backends"
self.MODELS_PATH = "Models Path:"
self.OUTPUT_PATH = "Output Path:"
self.LOGS_PATH = "Logs Path:"
self.BROWSE = "Browse"
self.AVAILABLE_MODELS = "Available Models:"
self.QUANTIZATION_TYPE = "Quantization Type:"
self.ALLOW_REQUANTIZE = "Allow Requantize"
self.LEAVE_OUTPUT_TENSOR = "Leave Output Tensor"
self.PURE = "Pure"
self.IMATRIX = "IMatrix:"
self.INCLUDE_WEIGHTS = "Include Weights:"
self.EXCLUDE_WEIGHTS = "Exclude Weights:"
self.USE_OUTPUT_TENSOR_TYPE = "Use Output Tensor Type"
self.USE_TOKEN_EMBEDDING_TYPE = "Use Token Embedding Type"
self.KEEP_SPLIT = "Keep Split"
self.KV_OVERRIDES = "KV Overrides:"
self.ADD_NEW_OVERRIDE = "Add new override"
self.QUANTIZE_MODEL = "Quantize Model"
self.SAVE_PRESET = "Save Preset"
self.LOAD_PRESET = "Load Preset"
self.TASKS = "Tasks:"
self.DOWNLOAD_LLAMACPP = "Download llama.cpp"
self.SELECT_RELEASE = "Select Release:"
self.SELECT_ASSET = "Select Asset:"
self.EXTRACT_CUDA_FILES = "Extract CUDA files"
self.SELECT_CUDA_BACKEND = "Select CUDA Backend:"
self.DOWNLOAD = "Download"
self.IMATRIX_GENERATION = "IMatrix Generation"
self.DATA_FILE = "Data File:"
self.MODEL = "Model:"
self.OUTPUT = "Output:"
self.OUTPUT_FREQUENCY = "Output Frequency:"
self.GPU_OFFLOAD = "GPU Offload:"
self.AUTO = "Auto"
self.GENERATE_IMATRIX = "Generate IMatrix"
self.ERROR = "Error"
self.WARNING = "Warning"
self.PROPERTIES = "Properties"
self.CANCEL = "Cancel"
self.RESTART = "Restart"
self.DELETE = "Delete"
self.CONFIRM_DELETION = "Are you sure you want to delete this task?"
self.TASK_RUNNING_WARNING = (
"Some tasks are still running. Are you sure you want to quit?"
)
self.YES = "Yes"
self.NO = "No"
self.DOWNLOAD_COMPLETE = "Download Complete"
self.CUDA_EXTRACTION_FAILED = "CUDA Extraction Failed"
self.PRESET_SAVED = "Preset Saved"
self.PRESET_LOADED = "Preset Loaded"
self.NO_ASSET_SELECTED = "No asset selected"
self.DOWNLOAD_FAILED = "Download failed"
self.NO_BACKEND_SELECTED = "No backend selected"
self.NO_MODEL_SELECTED = "No model selected"
self.REFRESH_RELEASES = "Refresh Releases"
self.NO_SUITABLE_CUDA_BACKENDS = "No suitable CUDA backends found"
self.LLAMACPP_DOWNLOADED_EXTRACTED = "llama.cpp binary downloaded and extracted to {0}\nCUDA files extracted to {1}"
self.CUDA_FILES_EXTRACTED = "CUDA files extracted to"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = (
"No suitable CUDA backend found for extraction"
)
self.ERROR_FETCHING_RELEASES = "Error fetching releases: {0}"
self.CONFIRM_DELETION_TITLE = "Confirm Deletion"
self.LOG_FOR = "Log for {0}"
self.ALL_FILES = "All Files (*)"
self.GGUF_FILES = "GGUF Files (*.gguf)"
self.DAT_FILES = "DAT Files (*.dat)"
self.JSON_FILES = "JSON Files (*.json)"
self.FAILED_LOAD_PRESET = "Failed to load preset: {0}"
self.INITIALIZING_AUTOGGUF = "Initializing AutoGGUF application"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF initialization complete"
self.REFRESHING_BACKENDS = "Refreshing backends"
self.NO_BACKENDS_AVAILABLE = "No backends available"
self.FOUND_VALID_BACKENDS = "Found {0} valid backends"
self.SAVING_PRESET = "Saving preset"
self.PRESET_SAVED_TO = "Preset saved to {0}"
self.LOADING_PRESET = "Loading preset"
self.PRESET_LOADED_FROM = "Preset loaded from {0}"
self.ADDING_KV_OVERRIDE = "Adding KV override: {0}"
self.SAVING_TASK_PRESET = "Saving task preset for {0}"
self.TASK_PRESET_SAVED = "Task Preset Saved"
self.TASK_PRESET_SAVED_TO = "Task preset saved to {0}"
self.RESTARTING_TASK = "Restarting task: {0}"
self.IN_PROGRESS = "In Progress"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "Download finished. Extracted to: {0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = "llama.cpp binary downloaded and extracted to {0}\nCUDA files extracted to {1}"
self.NO_SUITABLE_CUDA_BACKEND_FOUND = (
"No suitable CUDA backend found for extraction"
)
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp binary downloaded and extracted to {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "Refreshing llama.cpp releases"
self.UPDATING_ASSET_LIST = "Updating asset list"
self.UPDATING_CUDA_OPTIONS = "Updating CUDA options"
self.STARTING_LLAMACPP_DOWNLOAD = "Starting llama.cpp download"
self.UPDATING_CUDA_BACKENDS = "Updating CUDA backends"
self.NO_CUDA_BACKEND_SELECTED = "No CUDA backend selected for extraction"
self.EXTRACTING_CUDA_FILES = "Extracting CUDA files from {0} to {1}"
self.DOWNLOAD_ERROR = "Download error: {0}"
self.SHOWING_TASK_CONTEXT_MENU = "Showing task context menu"
self.SHOWING_PROPERTIES_FOR_TASK = "Showing properties for task: {0}"
self.CANCELLING_TASK = "Cancelling task: {0}"
self.CANCELED = "Cancelled"
self.DELETING_TASK = "Deleting task: {0}"
self.LOADING_MODELS = "Loading models"
self.LOADED_MODELS = "Loaded {0} models"
self.BROWSING_FOR_MODELS_DIRECTORY = "Browsing for models directory"
self.SELECT_MODELS_DIRECTORY = "Select Models Directory"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "Browsing for output directory"
self.SELECT_OUTPUT_DIRECTORY = "Select Output Directory"
self.BROWSING_FOR_LOGS_DIRECTORY = "Browsing for logs directory"
self.SELECT_LOGS_DIRECTORY = "Select Logs Directory"
self.BROWSING_FOR_IMATRIX_FILE = "Browsing for IMatrix file"
self.SELECT_IMATRIX_FILE = "Select IMatrix File"
self.RAM_USAGE_FORMAT = "{0:.1f}% ({1} MB / {2} MB)"
self.CPU_USAGE_FORMAT = "CPU Usage: {0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "Validating quantization inputs"
self.MODELS_PATH_REQUIRED = "Models path is required"
self.OUTPUT_PATH_REQUIRED = "Output path is required"
self.LOGS_PATH_REQUIRED = "Logs path is required"
self.STARTING_MODEL_QUANTIZATION = "Starting model quantization"
self.INPUT_FILE_NOT_EXIST = "Input file '{0}' does not exist."
self.QUANTIZING_MODEL_TO = "Quantizing {0} to {1}"
self.QUANTIZATION_TASK_STARTED = "Quantization task started for {0}"
self.ERROR_STARTING_QUANTIZATION = "Error starting quantization: {0}"
self.UPDATING_MODEL_INFO = "Updating model info: {0}"
self.TASK_FINISHED = "Task finished: {0}"
self.SHOWING_TASK_DETAILS_FOR = "Showing task details for: {0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "Browsing for IMatrix data file"
self.SELECT_DATA_FILE = "Select Data File"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "Browsing for IMatrix model file"
self.SELECT_MODEL_FILE = "Select Model File"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "Browsing for IMatrix output file"
self.SELECT_OUTPUT_FILE = "Select Output File"
self.STARTING_IMATRIX_GENERATION = "Starting IMatrix generation"
self.BACKEND_PATH_NOT_EXIST = "Backend path does not exist: {0}"
self.GENERATING_IMATRIX = "Generating IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = (
"Error starting IMatrix generation: {0}"
)
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix generation task started"
self.ERROR_MESSAGE = "Error: {0}"
self.TASK_ERROR = "Task error: {0}"
self.APPLICATION_CLOSING = "Application closing"
self.APPLICATION_CLOSED = "Application closed"
self.SELECT_QUANTIZATION_TYPE = "Select the quantization type"
self.ALLOWS_REQUANTIZING = (
"Allows requantizing tensors that have already been quantized"
)
self.LEAVE_OUTPUT_WEIGHT = "Will leave output.weight un(re)quantized"
self.DISABLE_K_QUANT_MIXTURES = (
"Disable k-quant mixtures and quantize all tensors to the same type"
)
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"Use data in file as importance matrix for quant optimisations"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Use importance matrix for these tensors"
)
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = (
"Don't use importance matrix for these tensors"
)
self.OUTPUT_TENSOR_TYPE = "Output Tensor Type:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = (
"Use this type for the output.weight tensor"
)
self.TOKEN_EMBEDDING_TYPE = "Token Embedding Type:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = (
"Use this type for the token embeddings tensor"
)
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"Will generate quantized model in the same shards as input"
)
self.OVERRIDE_MODEL_METADATA = "Override model metadata"
self.INPUT_DATA_FILE_FOR_IMATRIX = "Input data file for IMatrix generation"
self.MODEL_TO_BE_QUANTIZED = "Model to be quantized"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "Output path for the generated IMatrix"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "How often to save the IMatrix"
self.SET_GPU_OFFLOAD_VALUE = "Set GPU offload value (-ngl)"
self.COMPLETED = "Completed"
self.REFRESH_MODELS = "Refresh Models"
class _TraditionalChinese(_Localization):
def __init__(self):
super().__init__()
self.WINDOW_TITLE = "AutoGGUF自動 GGUF 模型量化器)"
self.RAM_USAGE = "RAM 使用量:"
self.CPU_USAGE = "CPU 使用率:"
self.BACKEND = "Llama.cpp 後端:"
self.REFRESH_BACKENDS = "重新整理後端"
self.MODELS_PATH = "模型路徑:"
self.OUTPUT_PATH = "輸出路徑:"
self.LOGS_PATH = "日誌路徑:"
self.BROWSE = "瀏覽"
self.AVAILABLE_MODELS = "可用模型:"
self.QUANTIZATION_TYPE = "量化類型:"
self.ALLOW_REQUANTIZE = "允許重新量化"
self.LEAVE_OUTPUT_TENSOR = "保留輸出張量"
self.PURE = "純粹"
self.IMATRIX = "IMatrix"
self.INCLUDE_WEIGHTS = "包含權重:"
self.EXCLUDE_WEIGHTS = "排除權重:"
self.USE_OUTPUT_TENSOR_TYPE = "使用輸出張量類型"
self.USE_TOKEN_EMBEDDING_TYPE = "使用權杖嵌入類型"
self.KEEP_SPLIT = "保持分割"
self.KV_OVERRIDES = "KV 覆蓋:"
self.ADD_NEW_OVERRIDE = "新增覆蓋"
self.QUANTIZE_MODEL = "量化模型"
self.SAVE_PRESET = "儲存預設"
self.LOAD_PRESET = "載入預設"
self.TASKS = "任務:"
self.DOWNLOAD_LLAMACPP = "下載 llama.cpp"
self.SELECT_RELEASE = "選擇版本:"
self.SELECT_ASSET = "選擇資源:"
self.EXTRACT_CUDA_FILES = "解壓縮 CUDA 檔案"
self.SELECT_CUDA_BACKEND = "選擇 CUDA 後端:"
self.DOWNLOAD = "下載"
self.IMATRIX_GENERATION = "IMatrix 產生"
self.DATA_FILE = "資料檔案:"
self.MODEL = "模型:"
self.OUTPUT = "輸出:"
self.OUTPUT_FREQUENCY = "輸出頻率:"
self.GPU_OFFLOAD = "GPU 卸載:"
self.AUTO = "自動"
self.GENERATE_IMATRIX = "產生 IMatrix"
self.ERROR = "錯誤"
self.WARNING = "警告"
self.PROPERTIES = "屬性"
self.CANCEL = "取消"
self.RESTART = "重新啟動"
self.DELETE = "刪除"
self.CONFIRM_DELETION = "您確定要刪除此任務嗎?"
self.TASK_RUNNING_WARNING = "某些任務仍在執行中。您確定要結束嗎?"
self.YES = ""
self.NO = ""
self.DOWNLOAD_COMPLETE = "下載完成"
self.CUDA_EXTRACTION_FAILED = "CUDA 解壓縮失敗"
self.PRESET_SAVED = "預設已儲存"
self.PRESET_LOADED = "預設已載入"
self.NO_ASSET_SELECTED = "未選擇資源"
self.DOWNLOAD_FAILED = "下載失敗"
self.NO_BACKEND_SELECTED = "未選擇後端"
self.NO_MODEL_SELECTED = "未選擇模型"
self.REFRESH_RELEASES = "重新整理版本"
self.NO_SUITABLE_CUDA_BACKENDS = "找不到合適的 CUDA 後端"
self.LLAMACPP_DOWNLOADED_EXTRACTED = (
"llama.cpp 二進位檔案已下載並解壓縮至 {0}\nCUDA 檔案已解壓縮至 {1}"
)
self.CUDA_FILES_EXTRACTED = "CUDA 檔案已解壓縮至"
self.NO_SUITABLE_CUDA_BACKEND_EXTRACTION = "找不到合適的 CUDA 後端進行解壓縮"
self.ERROR_FETCHING_RELEASES = "擷取版本時發生錯誤:{0}"
self.CONFIRM_DELETION_TITLE = "確認刪除"
self.LOG_FOR = "{0} 的日誌"
self.ALL_FILES = "所有檔案 (*)"
self.GGUF_FILES = "GGUF 檔案 (*.gguf)"
self.DAT_FILES = "DAT 檔案 (*.dat)"
self.JSON_FILES = "JSON 檔案 (*.json)"
self.FAILED_LOAD_PRESET = "載入預設失敗:{0}"
self.INITIALIZING_AUTOGGUF = "正在初始化 AutoGGUF 應用程式"
self.AUTOGGUF_INITIALIZATION_COMPLETE = "AutoGGUF 初始化完成"
self.REFRESHING_BACKENDS = "正在重新整理後端"
self.NO_BACKENDS_AVAILABLE = "沒有可用的後端"
self.FOUND_VALID_BACKENDS = "找到 {0} 個有效的後端"
self.SAVING_PRESET = "正在儲存預設"
self.PRESET_SAVED_TO = "預設已儲存至 {0}"
self.LOADING_PRESET = "正在載入預設"
self.PRESET_LOADED_FROM = "{0} 載入了預設"
self.ADDING_KV_OVERRIDE = "正在新增 KV 覆蓋:{0}"
self.SAVING_TASK_PRESET = "正在儲存 {0} 的任務預設"
self.TASK_PRESET_SAVED = "任務預設已儲存"
self.TASK_PRESET_SAVED_TO = "任務預設已儲存至 {0}"
self.RESTARTING_TASK = "正在重新啟動任務:{0}"
self.IN_PROGRESS = "處理中"
self.DOWNLOAD_FINISHED_EXTRACTED_TO = "下載完成。已解壓縮至:{0}"
self.LLAMACPP_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp 二進位檔案已下載並解壓縮至 {0}\nCUDA 檔案已解壓縮至 {1}"
)
self.NO_SUITABLE_CUDA_BACKEND_FOUND = "找不到合適的 CUDA 後端進行解壓縮"
self.LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED = (
"llama.cpp 二進位檔案已下載並解壓縮至 {0}"
)
self.REFRESHING_LLAMACPP_RELEASES = "正在重新整理 llama.cpp 版本"
self.UPDATING_ASSET_LIST = "正在更新資源清單"
self.UPDATING_CUDA_OPTIONS = "正在更新 CUDA 選項"
self.STARTING_LLAMACPP_DOWNLOAD = "正在開始下載 llama.cpp"
self.UPDATING_CUDA_BACKENDS = "正在更新 CUDA 後端"
self.NO_CUDA_BACKEND_SELECTED = "未選擇要解壓縮的 CUDA 後端"
self.EXTRACTING_CUDA_FILES = "正在從 {0} 解壓縮 CUDA 檔案至 {1}"
self.DOWNLOAD_ERROR = "下載錯誤:{0}"
self.SHOWING_TASK_CONTEXT_MENU = "正在顯示任務操作選單"
self.SHOWING_PROPERTIES_FOR_TASK = "正在顯示任務的屬性:{0}"
self.CANCELLING_TASK = "正在取消任務:{0}"
self.CANCELED = "已取消"
self.DELETING_TASK = "正在刪除任務:{0}"
self.LOADING_MODELS = "正在載入模型"
self.LOADED_MODELS = "已載入 {0} 個模型"
self.BROWSING_FOR_MODELS_DIRECTORY = "正在瀏覽模型目錄"
self.SELECT_MODELS_DIRECTORY = "選擇模型目錄"
self.BROWSING_FOR_OUTPUT_DIRECTORY = "正在瀏覽輸出目錄"
self.SELECT_OUTPUT_DIRECTORY = "選擇輸出目錄"
self.BROWSING_FOR_LOGS_DIRECTORY = "正在瀏覽日誌目錄"
self.SELECT_LOGS_DIRECTORY = "選擇日誌目錄"
self.BROWSING_FOR_IMATRIX_FILE = "正在瀏覽 IMatrix 檔案"
self.SELECT_IMATRIX_FILE = "選擇 IMatrix 檔案"
self.RAM_USAGE_FORMAT = "{0:.1f}%{1} MB / {2} MB"
self.CPU_USAGE_FORMAT = "CPU 使用率:{0:.1f}%"
self.VALIDATING_QUANTIZATION_INPUTS = "正在驗證量化輸入"
self.MODELS_PATH_REQUIRED = "需要模型路徑"
self.OUTPUT_PATH_REQUIRED = "需要輸出路徑"
self.LOGS_PATH_REQUIRED = "需要日誌路徑"
self.STARTING_MODEL_QUANTIZATION = "正在開始模型量化"
self.INPUT_FILE_NOT_EXIST = "輸入檔案 '{0}' 不存在。"
self.QUANTIZING_MODEL_TO = "正在將 {0} 量化為 {1}"
self.QUANTIZATION_TASK_STARTED = "已啟動 {0} 的量化任務"
self.ERROR_STARTING_QUANTIZATION = "啟動量化時發生錯誤:{0}"
self.UPDATING_MODEL_INFO = "正在更新模型資訊:{0}"
self.TASK_FINISHED = "任務完成:{0}"
self.SHOWING_TASK_DETAILS_FOR = "正在顯示任務詳細資訊:{0}"
self.BROWSING_FOR_IMATRIX_DATA_FILE = "正在瀏覽 IMatrix 資料檔案"
self.SELECT_DATA_FILE = "選擇資料檔案"
self.BROWSING_FOR_IMATRIX_MODEL_FILE = "正在瀏覽 IMatrix 模型檔案"
self.SELECT_MODEL_FILE = "選擇模型檔案"
self.BROWSING_FOR_IMATRIX_OUTPUT_FILE = "正在瀏覽 IMatrix 輸出檔案"
self.SELECT_OUTPUT_FILE = "選擇輸出檔案"
self.STARTING_IMATRIX_GENERATION = "正在開始 IMatrix 產生"
self.BACKEND_PATH_NOT_EXIST = "後端路徑不存在:{0}"
self.GENERATING_IMATRIX = "正在產生 IMatrix"
self.ERROR_STARTING_IMATRIX_GENERATION = "啟動 IMatrix 產生時發生錯誤:{0}"
self.IMATRIX_GENERATION_TASK_STARTED = "IMatrix 產生任務已啟動"
self.ERROR_MESSAGE = "錯誤:{0}"
self.TASK_ERROR = "任務錯誤:{0}"
self.APPLICATION_CLOSING = "應用程式正在關閉"
self.APPLICATION_CLOSED = "應用程式已關閉"
self.SELECT_QUANTIZATION_TYPE = "請選擇量化類型"
self.ALLOWS_REQUANTIZING = "允許重新量化已量化的張量"
self.LEAVE_OUTPUT_WEIGHT = "將保留 output.weight 不被(重新)量化"
self.DISABLE_K_QUANT_MIXTURES = "停用 k-quant 混合並將所有張量量化為相同類型"
self.USE_DATA_AS_IMPORTANCE_MATRIX = (
"使用檔案中的資料作為量化最佳化的重要性矩陣"
)
self.USE_IMPORTANCE_MATRIX_FOR_TENSORS = "對這些張量使用重要性矩陣"
self.DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS = "不要對這些張量使用重要性矩陣"
self.OUTPUT_TENSOR_TYPE = "輸出張量類型:"
self.USE_THIS_TYPE_FOR_OUTPUT_WEIGHT = "對 output.weight 張量使用此類型"
self.TOKEN_EMBEDDING_TYPE = "權杖嵌入類型:"
self.USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS = "對權杖嵌入張量使用此類型"
self.WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS = (
"將在與輸入相同的分片中產生量化模型"
)
self.OVERRIDE_MODEL_METADATA = "覆蓋模型中繼資料"
self.INPUT_DATA_FILE_FOR_IMATRIX = "IMatrix 產生的輸入資料檔案"
self.MODEL_TO_BE_QUANTIZED = "要量化的模型"
self.OUTPUT_PATH_FOR_GENERATED_IMATRIX = "產生的 IMatrix 的輸出路徑"
self.HOW_OFTEN_TO_SAVE_IMATRIX = "儲存 IMatrix 的頻率"
self.SET_GPU_OFFLOAD_VALUE = "設定 GPU 卸載值(-ngl"
self.COMPLETED = "已完成"
self.REFRESH_MODELS = "重新整理模型"
# fmt: off
# Dictionary to map language codes to classes
_languages = {
"en-US": _English, # American English
"fr-FR": _French, # Metropolitan French
"zh-CN": _SimplifiedChinese, # Simplified Chinese
"es-ES": _Spanish, # Spanish (Spain)
"hi-IN": _Hindi, # Hindi (India)
"ru-RU": _Russian, # Russian (Russia)
"uk-UA": _Ukrainian, # Ukrainian (Ukraine)
"ja-JP": _Japanese, # Japanese (Japan)
"de-DE": _German, # German (Germany)
"pt-BR": _Portuguese, # Portuguese (Brazil)
"ar-SA": _Arabic, # Arabic (Saudi Arabia)
"ko-KR": _Korean, # Korean (Korea)
"it-IT": _Italian, # Italian (Italy)
"tr-TR": _Turkish, # Turkish (Turkey)
"nl-NL": _Dutch, # Dutch (Netherlands)
"fi-FI": _Finnish, # Finnish (Finland)
"bn-BD": _Bengali, # Bengali (Bangladesh)
"cs-CZ": _Czech, # Czech (Czech Republic)
"pl-PL": _Polish, # Polish (Poland)
"ro-RO": _Romanian, # Romanian (Romania)
"el-GR": _Greek, # Greek (Greece)
"pt-PT": _Portuguese_PT, # Portuguese (Portugal)
"hu-HU": _Hungarian, # Hungarian (Hungary)
"en-GB": _BritishEnglish, # British English
"fr-CA": _CanadianFrench, # Canadian French
"en-IN": _IndianEnglish, # Indian English
"en-CA": _CanadianEnglish, # Canadian English
"zh-TW": _TraditionalChinese, # Traditional Chinese (Taiwan)
}
# fmt: on
def set_language(lang_code) -> None:
# Globals
global WINDOW_TITLE, RAM_USAGE, CPU_USAGE, BACKEND, REFRESH_BACKENDS, MODELS_PATH, OUTPUT_PATH, LOGS_PATH
global BROWSE, AVAILABLE_MODELS, QUANTIZATION_TYPE, ALLOW_REQUANTIZE, LEAVE_OUTPUT_TENSOR, PURE, IMATRIX
global INCLUDE_WEIGHTS, EXCLUDE_WEIGHTS, USE_OUTPUT_TENSOR_TYPE, USE_TOKEN_EMBEDDING_TYPE, KEEP_SPLIT
global KV_OVERRIDES, ADD_NEW_OVERRIDE, QUANTIZE_MODEL, SAVE_PRESET, LOAD_PRESET, TASKS, DOWNLOAD_LLAMACPP
global SELECT_RELEASE, SELECT_ASSET, EXTRACT_CUDA_FILES, SELECT_CUDA_BACKEND, DOWNLOAD, IMATRIX_GENERATION
global DATA_FILE, MODEL, OUTPUT, OUTPUT_FREQUENCY, GPU_OFFLOAD, AUTO, GENERATE_IMATRIX, ERROR, WARNING
global PROPERTIES, CANCEL, RESTART, DELETE, CONFIRM_DELETION, TASK_RUNNING_WARNING, YES, NO, DOWNLOAD_COMPLETE
global CUDA_EXTRACTION_FAILED, PRESET_SAVED, PRESET_LOADED, NO_ASSET_SELECTED, DOWNLOAD_FAILED, NO_BACKEND_SELECTED
global NO_MODEL_SELECTED, REFRESH_RELEASES, NO_SUITABLE_CUDA_BACKENDS, LLAMACPP_DOWNLOADED_EXTRACTED, CUDA_FILES_EXTRACTED
global NO_SUITABLE_CUDA_BACKEND_EXTRACTION, ERROR_FETCHING_RELEASES, CONFIRM_DELETION_TITLE, LOG_FOR, ALL_FILES
global GGUF_FILES, DAT_FILES, JSON_FILES, FAILED_LOAD_PRESET, INITIALIZING_AUTOGGUF, AUTOGGUF_INITIALIZATION_COMPLETE
global REFRESHING_BACKENDS, NO_BACKENDS_AVAILABLE, FOUND_VALID_BACKENDS, SAVING_PRESET, PRESET_SAVED_TO, LOADING_PRESET
global PRESET_LOADED_FROM, ADDING_KV_OVERRIDE, SAVING_TASK_PRESET, TASK_PRESET_SAVED, TASK_PRESET_SAVED_TO, RESTARTING_TASK
global IN_PROGRESS, DOWNLOAD_FINISHED_EXTRACTED_TO, LLAMACPP_DOWNLOADED_AND_EXTRACTED, NO_SUITABLE_CUDA_BACKEND_FOUND
global LLAMACPP_BINARY_DOWNLOADED_AND_EXTRACTED, REFRESHING_LLAMACPP_RELEASES, UPDATING_ASSET_LIST, UPDATING_CUDA_OPTIONS
global STARTING_LLAMACPP_DOWNLOAD, UPDATING_CUDA_BACKENDS, NO_CUDA_BACKEND_SELECTED, EXTRACTING_CUDA_FILES, DOWNLOAD_ERROR
global SHOWING_TASK_CONTEXT_MENU, SHOWING_PROPERTIES_FOR_TASK, CANCELLING_TASK, CANCELED, DELETING_TASK, LOADING_MODELS, LOADED_MODELS
global BROWSING_FOR_MODELS_DIRECTORY, SELECT_MODELS_DIRECTORY, BROWSING_FOR_OUTPUT_DIRECTORY, SELECT_OUTPUT_DIRECTORY
global BROWSING_FOR_LOGS_DIRECTORY, SELECT_LOGS_DIRECTORY, BROWSING_FOR_IMATRIX_FILE, SELECT_IMATRIX_FILE, RAM_USAGE_FORMAT
global CPU_USAGE_FORMAT, VALIDATING_QUANTIZATION_INPUTS, MODELS_PATH_REQUIRED, OUTPUT_PATH_REQUIRED, LOGS_PATH_REQUIRED
global STARTING_MODEL_QUANTIZATION, INPUT_FILE_NOT_EXIST, QUANTIZING_MODEL_TO, QUANTIZATION_TASK_STARTED, ERROR_STARTING_QUANTIZATION
global UPDATING_MODEL_INFO, TASK_FINISHED, SHOWING_TASK_DETAILS_FOR, BROWSING_FOR_IMATRIX_DATA_FILE, SELECT_DATA_FILE
global BROWSING_FOR_IMATRIX_MODEL_FILE, SELECT_MODEL_FILE, BROWSING_FOR_IMATRIX_OUTPUT_FILE, SELECT_OUTPUT_FILE
global STARTING_IMATRIX_GENERATION, BACKEND_PATH_NOT_EXIST, GENERATING_IMATRIX, ERROR_STARTING_IMATRIX_GENERATION
global IMATRIX_GENERATION_TASK_STARTED, ERROR_MESSAGE, TASK_ERROR, APPLICATION_CLOSING, APPLICATION_CLOSED, SELECT_QUANTIZATION_TYPE
global ALLOWS_REQUANTIZING, LEAVE_OUTPUT_WEIGHT, DISABLE_K_QUANT_MIXTURES, USE_DATA_AS_IMPORTANCE_MATRIX, USE_IMPORTANCE_MATRIX_FOR_TENSORS
global DONT_USE_IMPORTANCE_MATRIX_FOR_TENSORS, OUTPUT_TENSOR_TYPE, USE_THIS_TYPE_FOR_OUTPUT_WEIGHT, TOKEN_EMBEDDING_TYPE, USE_THIS_TYPE_FOR_TOKEN_EMBEDDINGS
global WILL_GENERATE_QUANTIZED_MODEL_IN_SAME_SHARDS, OVERRIDE_MODEL_METADATA, INPUT_DATA_FILE_FOR_IMATRIX, MODEL_TO_BE_QUANTIZED
global OUTPUT_PATH_FOR_GENERATED_IMATRIX, HOW_OFTEN_TO_SAVE_IMATRIX, SET_GPU_OFFLOAD_VALUE, COMPLETED, REFRESH_MODELS
global CONTEXT_SIZE, CONTEXT_SIZE_FOR_IMATRIX, THREADS, NUMBER_OF_THREADS_FOR_IMATRIX, EXTRA_ARGUMENTS, EXTRA_ARGUMENTS_LABEL
global LORA_CONVERSION, LORA_INPUT_PATH, LORA_OUTPUT_PATH, SELECT_LORA_INPUT_DIRECTORY, SELECT_LORA_OUTPUT_FILE
global CONVERT_LORA, STARTING_LORA_CONVERSION, LORA_INPUT_PATH_REQUIRED, LORA_OUTPUT_PATH_REQUIRED, ERROR_STARTING_LORA_CONVERSION
global LORA_CONVERSION_TASK_STARTED, BIN_FILES, BROWSING_FOR_LORA_INPUT_DIRECTORY, BROWSING_FOR_LORA_OUTPUT_FILE, CONVERTING_LORA
global LORA_CONVERSION_FINISHED, LORA_FILE_MOVED, LORA_FILE_NOT_FOUND, ERROR_MOVING_LORA_FILE, EXPORT_LORA
global MODEL_PATH_REQUIRED, AT_LEAST_ONE_LORA_ADAPTER_REQUIRED, INVALID_LORA_SCALE_VALUE, ERROR_STARTING_LORA_EXPORT, LORA_EXPORT_TASK_STARTED
global GGML_LORA_ADAPTERS, SELECT_LORA_ADAPTER_FILES, ADD_ADAPTER, DELETE_ADAPTER, LORA_SCALE
global ENTER_LORA_SCALE_VALUE, NUMBER_OF_THREADS_FOR_LORA_EXPORT, EXPORTING_LORA, BROWSING_FOR_EXPORT_LORA_MODEL_FILE, BROWSING_FOR_EXPORT_LORA_OUTPUT_FILE
global ADDING_LORA_ADAPTER, DELETING_LORA_ADAPTER, LORA_FILES, SELECT_LORA_ADAPTER_FILE, STARTING_LORA_EXPORT
global OUTPUT_TYPE, SELECT_OUTPUT_TYPE, GGUF_AND_BIN_FILES, BASE_MODEL, SELECT_BASE_MODEL_FILE
global BASE_MODEL_PATH_REQUIRED, BROWSING_FOR_BASE_MODEL_FILE, SELECT_BASE_MODEL_FOLDER, BROWSING_FOR_BASE_MODEL_FOLDER
global LORA_CONVERSION_FROM_TO, GENERATING_IMATRIX_FOR, MODEL_PATH_REQUIRED_FOR_IMATRIX, NO_ASSET_SELECTED_FOR_CUDA_CHECK, QUANTIZATION_COMMAND
global IMATRIX_GENERATION_COMMAND, LORA_CONVERSION_COMMAND, LORA_EXPORT_COMMAND
global NO_QUANTIZATION_TYPE_SELECTED, STARTING_HF_TO_GGUF_CONVERSION, MODEL_DIRECTORY_REQUIRED
global HF_TO_GGUF_CONVERSION_COMMAND, CONVERTING_TO_GGUF, ERROR_STARTING_HF_TO_GGUF_CONVERSION
global HF_TO_GGUF_CONVERSION_TASK_STARTED, HF_TO_GGUF_CONVERSION, MODEL_DIRECTORY, OUTPUT_FILE
global VOCAB_ONLY, USE_TEMP_FILE, NO_LAZY_EVALUATION, MODEL_NAME, VERBOSE, SPLIT_MAX_SIZE
global DRY_RUN, CONVERT_HF_TO_GGUF, SELECT_HF_MODEL_DIRECTORY, BROWSE_FOR_HF_MODEL_DIRECTORY
global BROWSE_FOR_HF_TO_GGUF_OUTPUT, SHARDED
loc = _languages.get(lang_code, _English)()
english_loc = _English() # Create an instance of English localization for fallback
for key in dir(english_loc):
if not key.startswith("_"):
globals()[key] = getattr(loc, key, getattr(english_loc, key))
def load_language():
if not os.path.exists(".env"):
return None
with open(".env", "r") as f:
for line in f:
match = re.match(
r"AUTOGGUF_LANGUAGE=([a-zA-Z]{2}-[a-zA-Z]{2})", line.strip()
)
if match:
return match.group(1)
return os.getenv("AUTOGGUF_LANGUAGE", "en-US")
# Get the language from the AUTOGGUF_LANGUAGE environment variable, default to 'en'
language_code = load_language()
# Set default language
set_language(language_code)