automatically quant GGUF models
Go to file
leafspark a0bd57cd70
add kv override and cuda backend bugfix
2024-08-03 14:29:04 -07:00
src add kv override and cuda backend bugfix 2024-08-03 14:29:04 -07:00
LICENSE Initial commit 2024-08-02 21:09:30 -07:00
README.md Update README.md 2024-08-03 13:33:49 -07:00
requirements.txt add code 2024-08-02 21:10:32 -07:00
run.bat Add files via upload 2024-08-02 21:55:57 -07:00

README.md

AutoGGUF - automated GGUF model quantizer

This application provides a graphical user interface for quantizing GGUF models using the llama.cpp library. It allows users to download different versions of llama.cpp, manage multiple backends, and perform quantization tasks with various options.

Main features:

  1. Download and manage llama.cpp backends
  2. Select and quantize GGUF models
  3. Configure quantization parameters
  4. Monitor system resources during quantization

Usage:

Cross platform:

  1. Install dependencies, either using the requirements.txt file or pip install PyQt6 requests psutil.
  2. Run the run.bat script to start the application, or run the command python src/main.py.

Windows:

  1. Download latest release, extract all to folder and run AutoGGUF.exe
  2. Enjoy!

Building:

cd src
pip install -U pyinstaller
pyinstaller main.py
cd dist/main
main

Dependencies:

  • PyQt6
  • requests
  • psutil

To be implemented:

  • Actual progress bar tracking
  • Download safetensors from HF and convert to unquanted GGUF
  • Specify multiple KV overrides
  • Better error handling
  • Cannot select output/token embd type

Troubleshooting:

  • llama.cpp quantizations errors out with an iostream error: create the quantized_models directory (or set a directory)

User interface: image