AutoGGUF/README.md

153 lines
5.5 KiB
Markdown

![AutoGGUF-banner](https://github.com/user-attachments/assets/0f74b104-0541-46a7-9ac8-4a3fcb74b896)
# AutoGGUF - automated GGUF model quantizer
<!-- Project Status -->
[![GitHub release](https://img.shields.io/github/release/leafspark/AutoGGUF.svg)](https://github.com/leafspark/AutoGGUF/releases)
[![GitHub last commit](https://img.shields.io/github/last-commit/leafspark/AutoGGUF.svg)](https://github.com/leafspark/AutoGGUF/commits)
[![CI/CD Status](https://img.shields.io/badge/CI%2FCD-passing-brightgreen)]()
<!-- Project Info -->
[![Powered by llama.cpp](https://img.shields.io/badge/Powered%20by-llama.cpp-green.svg)](https://github.com/ggerganov/llama.cpp)
![GitHub top language](https://img.shields.io/github/languages/top/leafspark/AutoGGUF.svg)
[![Platform Compatibility](https://img.shields.io/badge/platform-Linux%20%7C%20macOS%20%7C%20Windows-blue)]()
[![GitHub license](https://img.shields.io/github/license/leafspark/AutoGGUF.svg)](https://github.com/leafspark/AutoGGUF/blob/main/LICENSE)
<!-- Repository Stats -->
![GitHub stars](https://img.shields.io/github/stars/leafspark/AutoGGUF.svg)
![GitHub forks](https://img.shields.io/github/forks/leafspark/AutoGGUF.svg)
![GitHub release (latest by date)](https://img.shields.io/github/downloads/leafspark/AutoGGUF/latest/total?color=green)
![GitHub repo size](https://img.shields.io/github/repo-size/leafspark/AutoGGUF.svg)
<!-- Contribution -->
[![Code Style: Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Issues](https://img.shields.io/github/issues/leafspark/AutoGGUF)](https://github.com/leafspark/AutoGGUF/issues)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/leafspark/AutoGGUF/pulls)
AutoGGUF provides a graphical user interface for quantizing GGUF models using the llama.cpp library. It allows users to download different versions of llama.cpp, manage multiple backends, and perform quantization tasks with various options.
## Features
- Download and manage llama.cpp backends
- Select and quantize GGUF models
- Configure quantization parameters
- Monitor system resources during quantization
- Parallel quantization + imatrix generation
- LoRA conversion and merging
- Preset saving and loading
- AutoFP8 quantization
## Usage
### Cross-platform
1. Install dependencies:
```
pip install -r requirements.txt
```
2. Run the application:
```
python src/main.py
```
or use the `run.bat` script.
macOS and Ubuntu builds are provided with GitHub Actions, you may download the binaries in the releases section.
### Windows
Standard builds:
1. Download the latest release
2. Extract all files to a folder
3. Run `AutoGGUF-x64.exe`
Setup builds:
1. Download setup varient of latest release
2. Extract all files to a folder
3. Run the setup program
4. The .GGUF extension will be registered with the program automatically
5. Run the program from the Start Menu or desktop shortcuts
After launching the program, you may access its local server at port 7001 (set `AUTOGGUF_SERVER` to "enabled" first)
### Verifying Releases
#### Linux/macOS:
```bash
gpg --import AutoGGUF-v1.5.0-prerel.asc
gpg --verify AutoGGUF-v1.5.0-Windows-avx2-prerel.zip.sig AutoGGUF-v1.5.0-Windows-avx2-prerel.zip
sha256sum -c AutoGGUF-v1.5.0-prerel.sha256
```
#### Windows (PowerShell):
```powershell
# Import the public key
gpg --import AutoGGUF-v1.5.0-prerel.asc
# Verify the signature
gpg --verify AutoGGUF-v1.8.1-Windows-avx2.zip.sig AutoGGUF-v1.8.1-Windows-avx2.zip
# Check SHA256
$fileHash = (Get-FileHash -Algorithm SHA256 AutoGGUF-v1.8.1-Windows-avx2.zip).Hash.ToLower()
$storedHash = (Get-Content AutoGGUF-v1.8.1.sha256 | Select-String AutoGGUF-v1.8.1-Windows-avx2.zip).Line.Split()[0]
if ($fileHash -eq $storedHash) { "SHA256 Match" } else { "SHA256 Mismatch" }
```
Release keys are identical to ones used for commiting.
## Building
### Cross-platform
```bash
pip install -U pyinstaller
./build.sh RELEASE | DEV
cd build/<type>/dist/
./AutoGGUF
```
### Windows
```bash
build RELEASE | DEV
```
Find the executable in `build/<type>/dist/AutoGGUF.exe`.
You can also use the slower build but faster executable script (Nuitka):
```bash
build_optimized RELEASE | DEV
```
## Dependencies
Find them in `requirements.txt`.
## Localizations
View the list of supported languages at [AutoGGUF/wiki/Installation#configuration](https://github.com/leafspark/AutoGGUF/wiki/Installation#configuration) (LLM translated, except for English).
To use a specific language, set the `AUTOGGUF_LANGUAGE` environment variable to one of the listed language codes (note: some languages may not be fully supported yet, those will fall back to English).
## Issues
- None!
## Planned Features
- Time estimation for quantization
- Actual progress bar tracking
- Perplexity testing
- HuggingFace upload/download (coming in the next release)
- AutoFP8 quantization (partially done) and bitsandbytes (coming soon)
## Troubleshooting
- SSL module cannot be found error: Install OpenSSL or run from source using `python src/main.py` with the `run.bat` script (`pip install requests`)
## Contributing
Fork the repo, make your changes, and ensure you have the latest commits when merging. Include a changelog of new features in your pull request description. Read `CONTRIBUTING.md` for more information.
## User Interface
![AutoGGUF-v1 7 1-showcase-blue](https://github.com/user-attachments/assets/4240437f-77d4-459b-924f-c80e5f672c4f)
## Stargazers
[![Star History Chart](https://api.star-history.com/svg?repos=leafspark/AutoGGUF&type=Date)](https://star-history.com/#leafspark/AutoGGUF&Date)